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Abstract 
It’s well known to all that operating an UAV (Unmanned Aerial Vehicle) safely and efficiently under 
endpoint constraints can be challenging in an interactive environment. And how to autonomously 
generate the optimal decision policy of UAV maneuvering is one of the key issues of solving this matter. 
In this paper, we proposed an autonomous maneuvering decision algorithm based on deep reinforcement 
learning to train the UAV agent for generating efficient maneuvers under endpoint constraints in an 
interactive environment. Finally, according to the self-developed simulation examples, a desirable 
maneuvering decision policy is developed by the algorithm we proposed. 

1. Introduction 

With the development of the UAV Technology in recent years, the performance of UAV has been improved rapidly in 
all aspects　[1]. Improving UAV autonomous flight capability, reducing human intervention and avoiding human 
errors are the research focus of UAV researchers in various countries. The traditional UAV’s flight guidance usually 
controls the maneuvering strategy of UAV to make it fly along the corresponding flight trajectory in the mission area. 
Usually, the maneuvering decision of UAV is based on matrix game　[2], dynamic programming　[3], neural 
network　[4], expert system　[5], dynamic Bayesian network　[6], influence diagram　[7] and trajectory 
prediction　[8]. Due to the breakthrough progress in electronic technology and the rapid development of artificial 
intelligence technology, various artificial intelligence algorithms have been continuously applied to the control field 
in recent years. In 2015, DeepMind (Google) published Deep Q-Learning (DQN) in Nature, which is the first model 
to successfully combine deep learning with reinforcement learning　[9].  
In this paper, to solve the problem of autonomous generation of maneuvering decision for UAV in autonomous flight, 
we proposed an autonomous maneuvering decision algorithm based on deep reinforcement learning to train the UAV 
agent for generating efficient maneuvers under endpoint constraints in an interactive environment. Particularly, two 
specific forms of action function and policy function were designed by deep neural networks and a training data set 
based on the experience buffer was constructed. Meanwhile, we planned a training framework based on the Deep 
Deterministic Policy Gradient. Additionally, a UAV maneuvering decision model was established by the MDPs 
(Markov Decision Processes　[10]) to describe the UAV maneuvers policy. Especially, the continuous state space, the 
continuous action space, and some specific reward functions are designed. The state space mainly included the relative 
state with respect to the target state. The action space was formed by the UAV’s control variables. And the reward 
functions were designed aiming at the features of problems. 
Finally, to verify the algorithm that we proposed, some self-developed simulation examples were given, and the 
verification experiment included two kinds of simulation examples. The first example was to enable the UAV to reach 
a fixed target point in the two-dimensional plane (horizontal plane), that means the UAV must fly to a specified position 
from a random position in the horizontal plane. The second example was to enable the UAV to be adjusted to a 
deterministic attitude (azimuth), that means the UAV could adjust itself to adapt to a required attitude from any state. 
Next, we will introduce the UAV maneuvering decision model based on the MDPs and Autonomous Maneuvering 
Decision Algorithm of UAV based on DDPG. 
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2. The UAV Maneuvering Decision Model based on MDPs 

2.1 The Markov Decision Processes Theory 

The Markov decision process is an important method to study the state space of discrete event dynamic systems and 
its mathematical basis is stochastic process theory. In a finite period, the process describes that a decision maker 
periodically or continuously observes a stochastic dynamic system with markovian and makes decisions sequentially. 
The Markov decision process theory can be described by a quintuple ⟨𝑇, 𝑆, 𝐴ሺ𝑠ሻ, 𝑃ሺ⋅ |𝑠, 𝑎ሻ, 𝑅ሺ𝑠, 𝑎ሻ⟩, where T represents 
the decision time, S represents the system state space, 𝐴ሺ𝑠ሻrepresents the system action space, and the transition 
probability 𝑃ሺ⋅ |𝑠, 𝑎ሻ represents the probability distribution of the system at the next moment when the system used 
the action 𝑎 ∈ 𝐴 in the state 𝑠 ∈ 𝑆. The reward function 𝑅ሺ𝑠, 𝑎ሻ represents the benefit that the decision maker gets 
when the action 𝑎 ∈ 𝐴 is taken in the state 𝑠 ∈ 𝑆. Based on the Markov decision process theory, we can make a 
complete mathematical description of the sequence decision problem. 
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Figure 1: The structure of finit Markov decision processes. 

As shown in Figure 1, the Markov decision process can be summarized as follows: the initial state 𝑠଴ of the system is 
that the decision maker chooses the action 𝑎଴ and executes it, the system moves to the system state 𝑠ଵ according to a 
certain transition probability 𝑃ሺ⋅ |𝑠଴, 𝑎଴ሻ, and so on. In this process, the decision maker earned rewards sequence 
ሺ𝑟଴, 𝑟ଵ, ⋯ ሻ. Among this process, decision makers are stimulated by external rewards, and the rewards are maximized 
by constantly updating the strategy. The strategy adopted by the decision maker is 𝑎 ൌ 𝜋ሺ𝑠ሻ and the utility function 
(in the state 𝑠 ∈ 𝑆, the expected return obtained by adopting the strategy 𝜋) is 𝑣ሺ𝑠, 𝜋ሻ. When current strategy is the 
optimal strategy, the formula (1) should be satisfied. 
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p

p= Î                                                                     (1) 

 
Based on the characteristics of the autonomous maneuver control problem of UAV, we use infinite stage discount 
model as the utility function, as shown in formula (2). 
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In the above formula, 𝛾 ∈ ሾ0,1ሿ is the future reward discount factor. According to the above formula, the optimal 
strategy under the discount model can be obtained. 
In the following, based on the many characteristics of Markov decision process theory, including state space S, action 
space 𝐴ሺ𝑠ሻ, transition probability 𝑃ሺ⋅ |𝑠, 𝑎ሻ and reward function 𝑅ሺ𝑠, 𝑎ሻ, the autonomous flight control model of UAV 
is established. 

2.2 The 3-DoF Flight Simulation Model of UAV 

In the autonomous flight control model of the UAV, the 3-DoF flight simulation model of the UAV is used to achieve 
the motion simulation. According to the mathematical characteristics of the model, the transition probability of the 
system is 𝑃ሺ⋅ |𝑠, 𝑎ሻ ൌ 1. For example, the formula (3) is the 3-DoF flight simulation model of the UAV. 
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The tangential overload of the aircraft is 𝑁௫ in the aircraft coordinate system. The normal overload in the aircraft 
coordinate system is 𝑁௬. The symbol v is the aircraft speed, the symbol 𝜃 is the track tilt angle of UAV, the symbol 𝜓௖ 
is the track deflection angle of UAV, and the symbol 𝛾௖ is the speed tilt angle of UAV. The ሺ𝑥, 𝑦, 𝑧ሻ is respectively the 
3 directions coordinates of UAV in the geographic coordinate system. The symbol m is the mass of UAV and the 
symbol g represents the gravity acceleration. In the simulation process, we use the numerical analysis to solve the 
differential equations and the system’s input and output are separately ൫𝑥, 𝑦, 𝑧, 𝜓௖, 𝜃, 𝑁௫, 𝑁௬, 𝛾௖൯ and ሺ𝑥, 𝑦, 𝑧, 𝜓௖, 𝜃ሻ. 

2.3 The Flight State Space and Action Space of UAV 

The autonomous maneuvering control of UAV under position constraint is designed to solve the problem that the UAV 
can fly to a target point autonomously from any position and arbitrary attitude in the horizontal plane. On the other 
hand, the autonomous maneuvering control under angle constraint is designed to solve the problem that the UAV is 
converted into a fixed attitude from a certain attitude in a horizontal plane through a certain maneuvering control 
strategy. For the above two problems, we can establish the corresponding geometric model, and their state space and 
action space are designed. 
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Figure 2 The geometric relationship between UAV and target state 

According to the 3-DoF flight simulation model of UAV, the position of UAV is set to be 𝑋௎஺௏ ൌ ሺ𝑥, 𝑦, 𝑧ሻ, and its 
reference coordinate system is the geographic coordinate system (the same below). The attitude of UAV is ሺ𝜓௖, 𝜃, 𝛾௖ሻ. 
Meanwhile, the target position is 𝑋்ீ் ൌ ሺ𝑥, 𝑦, 𝑧ሻ, and the target entry yaw is 𝜓் . Figure 2 shows the geometric 
relationship of the maneuvering decision problem that we proposed. The symbol 𝑋௙  represents the longitudinal 
direction of the UAV. The symbol 𝐷் is the distance between the UAV and the target position. The symbol 𝛿ట೅ is the 
orientation of the target position relative to the vertical axis of the UAV. The symbol 𝛿ట೎ represents the deviation 
between UAV and target attitude. 
(1) The UAV flight action space 
According to the formal of the control variable of the UAV’s 3-DoF flight simulation model, a vector is used to describe 
the flight action of UAV, as shown in formula (4), which is the UAV’s flight action space. 
 

{ }aA N=                                                                                (4) 
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The symbol 𝑁௔ is the control variable in the horizontal plane, and the relationship between the UAV’s control amount 
and it is as shown in formula (5). 
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(2) The UAV flight state space under position constraint 
According to the UAV’s position and the target position, the definition of the flight state space of UAV under position 
constraint in the horizontal plane can be obtained, as shown in formula (6). 
 

{ }, ,
TT yS D Nyd=                                                                         (6) 

 
The symbol 𝐷் ∈ ሾ0, 𝐷்

௠௔௫ሿ is the distance between UAV and target position; the symbol 𝛿ట೅ ∈ ሾെ𝜋, 𝜋ሿ is the azimuth 
of the target point relative to the longitudinal axis of UAV; the symbol 𝑁௬ ∈ ൣ0, 𝑁௬

௠௔௫൧ is the absolute value of the 
current decision action. As shown in formula (7), these are the calculation functions for each element of the state space. 
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The calculation results of 𝐷் and 𝛿ట೅ are absolute, and the symbols of them are determined according to the right-
hand rule. 
(3) The UAV flight state space under attitude constraint 
According to the definition of the UAV's attitude and the target yaw, the UAV's flight state space under attitude 
constraint in the horizontal plane can be obtained, as shown in formula (8). 
 

{ }
c

S yd=                                                                                (8) 

 
The symbol 𝛿ట೎ ∈ ሾെ𝜋, 𝜋ሿ is the deviation between the UAV’s yaw and the target azimuth. As shown in formula (9), 
it’s the calculation function of 𝛿ట೎. 
 

c T cyd y y= -                                                                            (9) 

 
The calculation result of 𝛿ట೎ is absolute, and the symbol is determined according to the right-hand rule. 

2.4 The Flight Assessment Function of UAV under Endpoint Constraints 

In the Markov decision process, the reward function determines the normal direction of the future evolution of the 
system and also determines the intention of the decision maker. For the problems under position and attitude constraint, 
the corresponding reward functions are designed separately. 
(1) The reward function under position constraint 
As described in Section 1.2, the autonomous maneuvering control under position constraint is designed to solve the 
problem: in the horizontal plane, the UAV can fly from an arbitrary position to the target position. Accordingly, there 
is an end condition for the task, as shown in formula (10). 
 

minlim UAV TGTt
X X D
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𝐷௠௜௡ is the minimum distance for the UAV to complete the task. According to the definition of the above formula, the 
corresponding reward function can be obtained, as shown in formula (11). 
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𝜔஽೅ ∈ ሾ0,1ሿ  is the distance benefit coefficient; 𝜔ேೌ ∈ ሾ0,1ሿ  is the maneuvering benefit coefficient; 𝐷்

௠௔௫  is the 
maximum distance between the UAV and the target position; and 𝑁௬

௠௔௫ is the maximum turning overload. 
(2) The reward function under attitude constraint 
For the autonomous maneuvering control problem of the UAV under attitude constraint, the end condition of the task 
is as shown in formula (12). 
 

minlim c Tt yy y d
¥

- £                                                                      (12) 

 
𝛿ట

௠௜௡  is the minimum deviation between the UAV and the target yaw. According to the above formula, the 
corresponding reward function can be obtained, as shown in formula (13). 
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(3) Termination reward function 
In addition to the above two reward functions for the final mission goals, we define the reward on success or failure of 
the task, as shown in the formula (14). 
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3. The UAV’s Autonomous Maneuvering Decision Algorithm based on Deep 
Reinforcement Learning 

3.1 The Deep Reinforcement Learning Method 

With the development of computer technology and electronic technology, artificial intelligence technology has 
advanced by leaps and bounds in recent years. As a popular direction, deep reinforcement learning has attracted the 
attention of scholars in various fields　[11]. Reinforcement learning is a method that solves the problem of maximizing 
reward or achieving specific goals through learning strategies in the process of interacting with the environment. Figure 
3 shows the normal framework of reinforcement learning. 

Machine Environment

action a

state s
reward r  

Figure 3: The normal structure of reinforcement learning 

Deep reinforcement learning is a traditional reinforcement learning based algorithm. It uses deep learning to 
approximate the state-action value function and strategy function for solving the combined explosion problem in the 
case of large state space and action space. Figure 4 shows the structure of the Deep Deterministic Strategy Gradient 
(DDPG) method, which is a model-free, off-policy deep reinforcement learning method based on the Actor-Critic 
architecture and can solve the continuous control problem　[12]. This algorithm consists of four parts: actor network 

𝜇ሺ𝑠; 𝜃ఓሻ, critic network 𝑄ሺ𝑠, 𝑎; 𝜃ொሻ, target actor network 𝜇′ቀ𝑠; 𝜃ఓ′ቁ and target critic network 𝑄′ቀ𝑠, 𝑎; 𝜃ொ′ቁ, and the 

replay buffer D. Compared with the traditional reinforcement learning algorithm, DDPG creates four new technologies: 
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experience replay mechanism, target network, batch normalization, additional noise. These methods solve the problems 
of deep reinforcement learning in practical applications. In the learning processes, the actor network makes the 
corresponding actions according to the environment state and appends additional noise, and then a tuple is constructed 
by the current state, action, reward and future state and saved into the experience replay buffer. Finally, sample 
randomly from replay buffer to obtain a training batch. The net parameters are optimized according to the optimal 
algorithms such as the gradient descent method and the target network parameters are smoothly updated. 

Policy 
Gradient

Loss 
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Evaluate Network Target Network

a CriticActor CriticActor

Q (s,a)Update

Q (s,a)

Update

a¢

( ),Q s a¢ ¢

s¢ s¢
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s
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( ), , ,s a r s¢

 
Figure 4: The structure of Deep Deterministic Policy Gradient 

In general, before using the reinforcement learning method to solve the problem, it is necessary to establish a 
corresponding problem model based on Markov decision process theory. Therefore, based on the autonomous flight 
control model established in section 1, the deep deterministic policy gradient method is used to establish the 
autonomous maneuvering control algorithm of the UAV. 

3.2 The UAV’s Autonomous Maneuvering Control Function based on Neural Network 

As mentioned earlier, DDPG is a kind of deep reinforcement learning algorithm based on the Actor-Critic framework. 
Figure 5 shows the normal structure of actor-critic deep reinforcement learning. In the training process, the dynamic 
evolution environment is used to generate the system state 𝑠 ∈ 𝑆. The actor network gives actions 𝑎 ∈ 𝐴ሺ𝑠ሻ according 
to the system state and executes it on the environment. In the processes, TD-error is used to optimize the critic network 
parameters. Similarly, the actor network parameters are optimized by utilizing 𝑚𝑎𝑥 𝑄 ሺ𝑠, 𝑎ሻ. 

Dynamic evolution environment

Critic Network

Actor Netwrok
action

TD-error

max Q(s, a)state

 
Figure 5: The normal structure of Actor-Critic deep reinforcement learning 

According to the autonomous flight control model and the DDPG method described above, the neural network 
technology is used to design the two kinds of networks involved in the autonomous maneuvering control algorithm of 
UAV. 
(1) Actor Network 
The actor network 𝜇ሺ𝑠; 𝜃ఓሻ mainly implements real-time decision under the current system state. The network input 
is the current system state 𝑠 ∈ 𝑆, and the output is the action 𝑎 ∈ 𝐴ሺ𝑠ሻ that the system should take. According to the 
UAV flight state space defined above, the number of network input nodes is 𝑑𝑖𝑚ሺ𝑆ሻ, and the number of output nodes 
is 𝑑𝑖𝑚ሺ𝐴ሻ. As shown in Figure 6, it is the normal structure of actor network. 
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Figure 6: The normal structure of Actor network 
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(2) Critic Network 
The critic network is used to evaluates the optimal degree of the current action 𝑎 ∈ 𝐴ሺ𝑠ሻ. The network input is ሾ𝑠, 𝑎ሿ, 
and the network output is 𝑄ሺ𝑠, 𝑎ሻ. According to the flight state space and action space of UAV defined above, the 
number of network input nodes is 𝑑𝑖𝑚ሺ𝑆ሻ ൅ 𝑑𝑖𝑚ሺ𝐴ሻ, and the number of network output nodes is 1. As shown in Figure 
7, it is the normal structure of critic network. 
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Figure 7: The normal structure of Critic network 

When we call these networks, the state 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴ሺ𝑠ሻ need to be normalized according to the definition of 
the state space and action space described above. And then, they are input into the networks. In addition, for the target 

actor network 𝜇′ቀ𝑠; 𝜃ఓ′
ቁ and target critic network 𝑄′ቀ𝑠, 𝑎; 𝜃ொ′

ቁ, their structure are similar to 𝜇ሺ𝑠; 𝜃ఓሻ and 𝑄ሺ𝑠, 𝑎; 𝜃ொሻ. 

Only the parameters updating method is distinguished. 

3.3 The UAV’s Maneuvering Control Algorithm based on DDPG 

As mentioned above, DDPG is a deep reinforcement learning method, which can solve the continuous decision problem 
well and has certain advantages in solving problems with large-scale state space and action space. The core of DDPG 
is the Actor-Critic structure, which has the advantages of two kinds of reinforcement learning methods including value 
based and policy gradient. 
The critic network used in DDPG comes from the Q-Learning algorithm, which is an off-policy method. According to 
the definition of the utility function, that is the formula (2), a function describing the state-action can be obtained, as 
shown in the formula (15). 
 

( ) ( ), ,Q s a v sp pé ù= ë û                                                                     (15) 

 
Formula (15) is the state-action value function. Therefore, the optimal decision can be defined as the formula (16). 
 

( )arg max ,t t
a

a Q s a=                                                                    (16) 

 
The above equation indicates that the optimal decision is when the system state is 𝑠௧ ∈ 𝑆. Therefore, the optimal 
strategy can be obtained by solving 𝑄ሺ𝑠, 𝑎ሻ. According to the formula (2) and the formula (15), it is easy to obtain an 
iterative formula of the Q-Learning method, as shown in the formula (17). 
 

( ) ( ) ( ) ( ), , max , ,
a

Q s a Q s a r Q s a Q s aa gé ù¢= + + -ê úë û
                                          (17) 

 
In formula (18), 𝑠 ∈ 𝑆 is the current state of the system; 𝑎 ∈ 𝐴ሺ𝑠ሻ is the current action; 𝑟 ൌ 𝑅ሺ𝑠, 𝑎ሻ is the current 
reward; and 𝑠′ ∈ 𝑆  is the next state of the system. Based on the formula (17), the loss function of the network 
𝑄ሺ𝑠, 𝑎; 𝜃ொሻ can be obtained, as shown in the formula (18). 
 

( ) ( ) ( )
2

max , ; , ;Q Q Q

a
L r Q s a Q s aq g q q¢

¢

é ù¢= + -ê úë û
                                              (18) 

 
According to the Q-Learning algorithm　[13], the gradient of the loss function of the critic network can be obtained, 
as shown in formula (19). 
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Meanwhile, the actor network in DDPG is derived from the Policy Gradient algorithm, which is a policy-based 
reinforcement learning method. Its advantage over the value function is that the solution result is the optimal strategy. 
In reinforcement learning, the strategy is divided into two types: deterministic strategy and nondeterministic strategy. 
The mathematical definition is shown in formula (20). 
 

( )
( )

~ , Nondeterministic

,Deterministic

a s

a s

p

m

ìïïíï =ïî
                                                             (20) 

 
According to the DPG theorem　[14], the gradient formula of the optimization objective function of the actor network 
can be obtained, as shown in formula (21). 
 

( ) ( ) ( ), , ,, , ; ;Q
as a r sv s Q s a sm m

m
q q

m q m q¢
é ùé ù =  ê úë û ë û                                             (21) 

 
In addition, DDPG also defines an experience replay buffer D for storing historical data. At the same time, the data of 
buffer is used to train the actor network and the critic network. As shown in equation (22) is the definition of the 
elements in replay buffer D. 
 

{ }, , ,D s a r sé ù¢= ë û                                                                        (22) 

 
𝑠 ∈ 𝑆 represents the current state of the system; 𝑎 ∈ 𝐴ሺ𝑠ሻ is the current action; 𝑟 ൌ 𝑅ሺ𝑠, 𝑎ሻ is the current reward; and 
𝑠′ ∈ 𝑆 is the next state of the system. 
In order to eliminate the problem of network divergence caused by poor data independence, based on the successful 

experience of DQN algorithm, DDPG follows the concept of target network, that is target actor network 𝜇′ቀ𝑠; 𝜃ఓ′ቁ and 

target critic network 𝑄′ቀ𝑠, 𝑎; 𝜃ொ′ቁ. At the same time, referring to the supervising learning, the parameters of the target 

networks are updated in a smooth update method, as shown in formula (23). 
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In equation (23), 𝜏 ∈ ሺ0,1ሻ is the hyperparameters updating coefficient. 
Since the deterministic strategy is poorly exploratory during the training process, the DDPG uses a method of 
superimposing noise on the output of the actor network to solve the problem, as shown in formula (24). 
 

( ) ( );t ta s tmm q= +                                                                    (24) 

 
In formula (24), 𝒩ሺ𝑡ሻ is the Ornstein–Uhlenbeck process　[15]. 
According to the above all, the training processes of the UAV autonomous maneuvering control algorithm based on 
DDPG is shown in Table 1. 
 

Table 1: The training processes of the UAV autonomous maneuvering control algorithm. 

The UAV autonomous maneuvering control algorithm 

Initialize the experience replay buffer D 

Initialize the actor network 𝜇ሺ𝑠; 𝜃ఓሻ, the target actor network 𝜇′ቀ𝑠; 𝜃ఓ′ቁ, the critic network 𝑄ሺ𝑠, 𝑎; 𝜃ொሻ and the 

target critic network 𝑄′ቀ𝑠, 𝑎; 𝜃ொ′ቁ 

For episode = 1 to M: 

Initialize the Ornstein–Uhlenbeck process 𝒩ሺ𝑡ሻ, and get the initial state 𝑠଴ of the UAV flight simulation 

DOI: 10.13009/EUCASS2019-419



INSTRUCTIONS FOR THE PREPARATION OF PAPERS 
     

 9

environment 

For t = 1 to T: 

According to 𝑎௧ ൌ 𝜇ሺ𝑠௧; 𝜃ఓሻ ൅ 𝒩ሺ𝑡ሻ generate the action 

Execute the action 𝑎௧ and get the reward 𝑟௧ 

Meanwhile, get the next state st+1 of the UAV flight simulation environment 

And save the current information (st, at, rt, st+1) into buffer D 

Randomly sampling from D to get a group of samples ሼሾ𝑠, 𝑎, 𝑟, 𝑠′ሿሽ 

Update parameters 𝜃ொ and 𝜃ఓ according to the formula (18) and (21) separately 

Update parameters 𝜃ொ′ and 𝜃ఓ′ according to the formula (23) 

End For 

End For 

 
After training according to the process in Table 1, the corresponding optimal actor network can be obtained. During 
the process of testing, the network output can be directly used as the decision result, as shown in formula (25). 

( ); ,a s s Smm q= Î                                                                      (25) 

4. Simulation & Analysis 

According to the autonomous flight control model of UAV and the autonomous maneuvering control algorithm of 
UAV, two simulation experiments are designed, which are the autonomous flight simulation of UAV under position 
and attitude constraint in the horizontal plane. After finishing the corresponding training, we prove the effectiveness 
of the autonomous maneuvering control algorithm we proposed by analysing the training data and test results. 
In this paper, the size of the simulation experiment spatial space is set to 50km×50km, and the height is 5km. According 
to the definition of the autonomous flight training environment and the autonomous maneuvering control algorithm of 
the UAV, the number of episodes is 𝑀 ൌ 1000 in this training, and the maximum number of decision times is 𝑇 ൌ
500 in a single episode. In addition, the decision cycle of the training environment is 0.1s. 

4.1the Autonomous Flight Simulation of UAV Under Position Constraint 

As shown in Figure 8, four testing results are shown after training. The first row is the flight trajectory of the UAV, 
and the second row is the corresponding reword change. The red solid point is the starting position; the green solid 
point is the end position; the dotted circle near the end position is the maximum range of the end point; the red curve 
is the flight trajectory of the UAV. The successful condition of the task under position constraint for the UAV is 
entering the endpoint ring successfully. 
It can be seen that the UAV can fly from any starting position to the end position using a certain maneuvering policy. 
With the development of simulation, the reward grows gradually. These cases prove that the autonomous maneuvering 
control algorithm can solve the autonomous flight problem of UAV under position constraint in the horizontal plane. 

    

    
Figure 8: The testing results of autonomous flight simulation of UAV under position constraint 
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4.2The Autonomous Flight Simulation of UAV Under Attitude Constraint 

As shown in Figure 9, four testing results are showed. The first row is the flight trajectory of the UAV, and the second 
row is about the change of the UAV’s azimuth and the corresponding reward changing. The red solid point is start 
position; the green dotted line is the line of UAV’s azimuth at the end of mission; the blue dotted line is the line of 
target azimuth; the red solid line is the flight trajectory of the UAV. In the azimuth change diagram, the red solid line 
is the change of the UAV's azimuth, and the green dotted line represents the target azimuth. The numbers in the legend 
represent the UAV's end azimuth angle and the target azimuth angle. The successful condition of the task under attitude 
constraint, the deviation between the UAV’s azimuth and the target azimuth line is not greater than 3∘. 
It can be seen from the flight trajectory diagram that the UAV can change from any azimuth to a given target azimuth 
by using a certain maneuvering policy. For the corresponding azimuth change diagram, the UAV azimuth is always 
changing to the target azimuth, and the reward increases steadily. The test results show that the autonomous 
maneuvering control algorithm of the UAV can solve the autonomous flight problems of the UAV under attitude 
constraint in the horizontal plane. 

    

    
Figure 9: The testing results of autonomous flight simulation of UAV under attitude constraint 

5. Conclusion 

In this paper, we discuss the autonomous flight control problem of UAV under position constraint and attitude 
constraint. According to Markov decision process theory, we establish the autonomous flight simulation environment 
of UAV. Aiming to the problems under position constraint and attitude constraint, the corresponding UAV flight state 
space, action space and reward function are designed respectively. Finally, the UAV autonomous maneuvering control 
algorithm is designed based on the DDPG method, and the corresponding simulation training is finished. The test 
results prove that the UAV autonomous maneuvering control algorithm can solve the problems of autonomous flight 
control of UAV under position constraint and attitude constraint. 
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