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Abstract 
This paper presents a multi-UAV 3D path planning method based on sparse A* algorithm. Firstly, the 

UAV performance constraints model is established. Secondly, the improved three-dimensional sparse 

A* path planning algorithm is proposed. Thirdly, the collaborative path planning correction mechanism 

under a dynamic environment is designed, which uses an established correlation-impact degree model. 

Finally, based on an assumed battlefield environment, the method is simulated. The results show that 

the algorithm can carry out multi-UAV path planning and meet the time-space coordination, the 

collaborative path planning correction mechanism can effectively deal with the sudden threat. 

1. Introduction 

Traditional path planning algorithms include A* algorithm and its variants [1-2], GA (Genetic Algorithm)[3-4], Ant 

colony optimization algorithm [5] and other evolutionary algorithms, as well as geometric methods such as Bubins [6-

7]. Evolutionary algorithms usually have slower computation speed, and their performance is highly dependent on the 

initial seeds. The traditional geometric method has a small amount of computation, but the planned path cannot 

guarantee optimality, and in a complex environment, the complexity of the algorithm will increase accordingly. The 

more commonly used algorithm in UAV path planning is A* algorithm and its variants, which has a faster calculation 

speed and can consider the path cost factors.  

Sparse A* algorithm (SAS) is a common variant of A* algorithm [8]. The SAS algorithm was first used to solve the 

single path planning problem in the two-dimensional environment, which can well handle the constraints such as the 

minimum segment length, the maximum horizontal angel, and the maximum path length. The two-dimensional SAS 

algorithm uses a sparse expansion method when expanding nodes, which greatly reduces the search space. Using a 

similar method, some studies [9-10] combine the maximum climb/dive angle constraints to make the sparse expansion 

in three-dimension, and propose the 3D version of the SAS algorithm. The 3D SAS algorithm combines the minimum 

segment length, maximum horizontal angle variation, maximum pitch angle variation, path length constraint, flight 

height constraint, and fixed target attack direction into the algorithm. When expanding a node, the SAS algorithm does 

not traverse each location unit in the area, but only considers several of the branches, usually dividing the horizontal 

direction and the vertical direction. The distance between these nodes and the current node is segment length which 

should be greater than minimum segment length. 

This work presents a multi-UAV 3D path planning method based on sparse A* algorithm. The method is proposed to 

solve the problem of multi-UAV collaborative real-time path planning under the influence of sudden threats with time-

space coordination.  

Firstly, the UAV performance constraints model is established based on the UAV motion model and some tactical 

requirements. The UAV performance constraints model includes pitch angle variation constraint, horizontal angle 

variation constraint, minimum segment length constraint, whole path length constraint, height constraint, and so on.  

Secondly, the improved three-dimensional sparse A* path planning algorithm is proposed. And a planned path length 

coordination factor calculation model and a cooperative anti-collision constraint model for multi-UAV path planning 

are established. The planned path length coordination factor is used to meet time coordination, and the cooperative 

anti-collision constraint is used to satisfy spatial coordination. The sparse A* algorithm process is modified and 

extended for multi-UAV cooperation. The cost function is composed of threat factor, path length factor, required angle 

factor and multi-UAV path coordination factor, etc.  
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Thirdly, the correlation-impact degree model of the multi-UAV path with a sudden threat is established, then the 

collaborative path planning correction mechanism under a dynamic environment is designed. When a sudden threat 

occurs, the current state of each UAV and the correlation-impact degree on the multi-UAV path are obtained. Re-

execution timings of the improved sparse A* algorithm is determined by the obtained information.  

Finally, the simulation is carried out based on an assumed battlefield environment, which is established with traditional 

terrain, radar, and some other threat models. The simulation results show that the improved sparse A* algorithm can 

reasonably and effectively carry out multi-UAV path planning and meet the time-space coordination, the collaborative 

path planning correction mechanism under a dynamic environment can effectively deal with the sudden threat in the 

planning environment. 

2. UAV Performance Constraints Model 

In the problem of flight path planning, it is necessary to comprehensively consider the maneuvering performance 

constraints of UAV. The UAV performance constraints include the maximum pitch angle variation constraint, the 

maximum horizontal angle variation of the UAV in a certain range, the flying height constraint, and the whole path 

length constraint, etc. Considering that the SAS algorithm is planned according to the step with a segment length, it is 

also necessary to consider the minimum segment length constraint. If the performance constraints of the UAV are 

taken into account, it can be guaranteed that the final planned waypoints is flyable. The planned flight path can be 

generated according to the planned waypoints, it can be provided for actual control of the UAV. 

2.1 Minimum Segment Length Constraint 

The minimum segment length constraint is the shortest distance that the UAV must fly directly before changing the 

current attitude. Usually, the distance of 1s when the UAV at the cruising speed is taken. The running step length of 

the SAS algorithm should not be smaller than this value. Otherwise, the planned path is not suitable for the actual 

situation. If the minimum segment length Lmin_step is set, the UAV needs to satisfy the following formula when changing 

the attitude: 

 

 
step min_stepL L  (1) 

 

Where Lstep is the length of the path segment between two adjacent waypoints. A fixed segment length is usually used 

in the SAS algorithm to make it greater than or equal to the minimum segment length. What’s more, in using of the 

algorithm results, for example, during further smoothing process, the value of Lstep may change. 

2.2 Maximum Pitch Angle Variation Constraint 

The maximum pitch angle variation constraint contains two parts, the maximum climb angle constraint and maximum 

dive angle constraint. They must be considered when planning a path of a fixed-wing UAV. The main factors affecting 

the maximum climb angle or the maximum dive angle include the UAV’s engine performance, weather conditions, 

flight altitude and UAV’s airfoil structure. The climb angle and the dive angle should not be too large, otherwise it 

may cause stall. The maximum climb angle and maximum dive angle can be directly analyzed by the performance of 

the UAV as its basic parameter.  

Note that the maximum climb angle is γmin_climb and the maximum dive angle is γmin_dive. Under normal conditions, the 

dive angle γdive and the climb angle γclimb are approximately equal to the pitch angle. When calculating, selecting 

stronger conditions and ignoring the possible large maneuver of the UAV, the angular relationship between the 

waypoint Pi : (xi,yi,zi) and the waypoint Pi+1 : (xi+1,yi+1,zi+1) should satisfy the following formula: 
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2.3 Maximum Horizontal Angle Variation Constraint 

The maximum horizontal angle constraint means that the steering capability of the UAV in the horizontal direction is 

limited between two adjacent segments in path. Normally, the maximum horizontal angle variation constraint needs to 

consider the factors of cruise speed and segment length. Two adjacent segments have three waypoints Pi : (xi,yi,zi), Pi+1 : 

(xi+1,yi+1,zi+1), and Pi+2 : (xi+2,yi+2,zi+2), and their angular relationship should satisfy as: 
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Δψ is the horizontal angle variation between two adjacent segments, and Δψmax is the maximum horizontal angle 

variation. 

2.4 Height Constraint 

The flight height constraint includes two aspects. First, the UAV is generally considered to have a maximum flying 

height that cannot be exceeded. In addition, the UAV must ensure a certain height from the ground to avoid a crash. 

Let Pt : (xt,yt,zt) be a waypoint that passes during the flight of the UAV, and the following relationship needs to be 

satisfied: 
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Where Δzmin is the minimum ground clearance height, zterrain (xt,yt) is the terrain height corresponding to (xt,yt), and zmax 

is the maximum flight altitude. During the SAS algorithm planning process, Pt : (xt,yt,zt) can be the point between the 

two waypoints. 

2.5 Whole Path Length Constraint 

Since the energy carried by the UAV is generally limited, the maximum flight length of the UAV exists. During 

calculating, the maximum path length of the UAV is generally set to the straight line distance from the planned start 

waypoint to the planned target waypoint. Let the maximum path length to Lmax_path_length, the planned waypoints are P1, 

P2, …, Pr, and Ps is one of candidate waypoint expanded by Pr. If Ptarget is the planned target waypoint, the following 

condition must be met: 
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3. Improved Three-dimensional Sparse A* Path Planning Algorithm 

3.1 Planned Path Length Coordination Factor 

In the process of multi-UAV path planning using sparse A* algorithm, the whole path length of each UAV from the 

start waypoint to the planned target waypoint is unknown, but the estimated total length of each UAV can be calculated. 

It equals the sum of the planned path length and the straight-line distance from the current planned node to the target 

waypoint. In the case where the performance of the UAV (mainly judged by the cruising speed) is close to or the same, 

if the values of the estimated total length of the different UAVs can be close to each other, the UAVs have similar 

time-consuming when arriving at their target. If the performance of the UAV has a certain difference, it can be corrected 

by multiplying the estimated total length of the path by a certain coefficient. Let the maximum path length to 
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Lmax_path_length, the planned waypoints are P1, P2, … , Pr, and Ps is one of candidate waypoint expanded by Pr. If Ptarget 

is the planned target waypoint. The estimated total length of path Lestimated_total_length is calculated as follows: 
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When there are k UAVs, the planned path length coordination factor of Rcooperate, i of the i-th UAV in candidate waypoint 

Ps is: 

 

 cooperate, cooperate estimated_total_length, estimated_total_length,=C (Max )i k i
k

R L L  (7) 

 

Where Ccooperate is a coefficient can be adjusted. The planned path length coordination factor of Rcooperate, i can be used 

in the calculation process, so as to meet time coordination. When the performance is insufficient, a recommended 

cruising speed of the UAV is given according to the length of the final planned path. 

3.2 Cooperative Anti-collision Constraint Model 

Spatial coordination mainly refers to when UAVs are flying, each UAV must be at a safe distance, which is related to 

the maneuverability of UAVs. Let a certain time t during the flight of the i-th UAV pass Pt,i : (xt,i,yt,i,zt,i), and the same 

time t during the flight of the j-th UAV pass Pt,j : (xt,j,yt,j,zt,j), then it must satisfy the following relationship: 

 

 , , min_safet i t jP P L    (8) 

 

Where ΔLmin_safe is the minimum safety distance. When the planning targets of UAVs are very close, the position of 

each UAV will inevitably approach when the planning is about to end. Therefore, when each planning process 

approaches the planned target waypoint, ΔLmin_safe may change to a smaller value. 

The relationship described in equation (8) has different implementation methods in the planning process. For the simple 

condition, it is possible to calculate line spacing between the flight path segments generated by the current planning 

and the last several segments of the existing other UAV’s path, then we can make sure whether the minimum safe 

distance is met, and the difference of possible recommended cruise speeds between different UAVs needs to be 

considered. Therefore, the parameter of the algorithm is a process of gradually iterative adaptation. Generally, the 

space coordination constraint needs to be stronger. 

3.3 Cost Function 

The basic cost function of the A* algorithm is in the form of: 

 

 ( ) ( ) ( )f n g n h n   (9) 

 

Where n is the current planning node, f(n) is the total cost function, g(n) is the actual cost function, and is related to 

the planned path, and h(n) is the estimated cost function, and is related to the predicted path. Variants of A* algorithms 

usually have optimization and refinement of the cost function. For the improved multi-UAV three-dimensional sparse 

A* algorithm described in this paper, the cost function includes the following costs: 

(1) Height threat cost: Height threat cost is an actual cost. In general, considering that UAVs can use terrain to hide 

themselves, the higher the flight, the more likely it is to be captured by the enemy radar, the greater the likelihood 

to be damaged. Therefore, the flying height of the UAV is taken as one of the cost factors. Let Pt : (xt,yt,zt) be a 

waypoint that passes during the flight of the UAV, the height threat value at Pt is: 
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The height threat value from the start waypoint to the planning waypoint Pt : (xt,yt,zt) is numerically integrated and 

multiplied by a coefficient to obtain the height threat cost gheight(Pt). 

(2) Terrain threat cost: The cost of terrain threat is an actual cost. Terrain threats mainly refer to peaks and highlands 

that may cause obstacles to UAVs at a certain flight altitude. The influence of peaks or highlands on the horizontal 

direction is only considered. The terrain threat cost varies according to the terrain modelling, and there are different 

ways. The terrain threat value from the start waypoint to the planning waypoint Pt : (xt,yt,zt) is numerically 

integrated and multiplied by a coefficient to obtain the terrain threat cost gterrain(Pt). 

(3) Task threat costs: the mission threat costs are actual costs. Three types, including enemy radar threats, enemy 

missile threats and atmospheric threats (referring to a certain range of climatic conditions that are not conducive 

to UAV flight) are considered. Depending on the environment modeling, the mission threat costs come in different 

forms. Each mission threat value from the start waypoint to the planning waypoint Pt : (xt,yt,zt) is numerically 

integrated and multiplied by a coefficient, then they were accumulated to the mission threat cost gtask_threat(Pt). 

 

 
task_threat radar missile climate( ) ( ) ( ) ( )t t t tg P g P g P g P    (11) 

 

(4) Target attack angle cost: The target attack angle cost is an estimated cost. The target attack angle refers to a given 

three-dimensional pose that the UAV should satisfy when it reaches its target. The target attack angle cost is 

designed according to the deviation of the current planned waypoint position from the direction of the target attack 

angle, as shown in the following figure: 
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Figure 1: target attack angle cost 

 

Where the current planning waypoint is Ps, the target waypoint is Ptarget, ωIncluded is direction deviation, and eAttack 

is the direction vector of the target attack angle, then the target attack angle cost of the current planning waypoint 

is: 
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Where Lstart_target is the straight line distance from the start waypoint to the target waypoint, and ka, kb are 

coefficients, usually, ka =1.0, kb =1/π. 

(5) Planned path length cost: The planned path length cost is actual cost. If the planned waypoints are P1, P2, … , Pr, 

and Ps is one of candidate waypoint expanded by Pr, the planned path length cost is: 
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(6) Estimated path length cost: The estimated path length cost is estimated cost. The straight line distance from the 

current planned waypoint to the target waypoint is used as the estimated path length. If the planned waypoints are 

P1, P2, … , Pr, and Ps is one of candidate waypoint expanded by Pr, the estimated path length cost is: 

 

 estimated_length estimated_length target( ) Cs sh P P P   (14) 

 

In summary, if the planned waypoints are P1, P2, … , Pr, and Ps is one of candidate waypoint expanded by Pr, then 

cost function of the improved multi-UAV three-dimensional sparse A* planning is: 
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3.4 Method Of Three-dimensional SAS Algorithm Node Expansion 

As shown in the following figure, in the vertical plane, the angles in the range of -γmax_dive to γmax_climb are equally 

divided to generate branches of optional Ps. 
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Figure 2: Angel partition in the vertical plane 

 

On the horizontal plane, the angles in the range of -Δψmax to Δψmax are equally divided to generate branches of optional 

Ps. 
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Figure 3: Angel partition in the horizontal plane 
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By integrating the nodes to be extended within the maximum pitch angle variation and the maximum horizontal angle 

variation constraint, a set of nodes to be expanded can be generated for subsequent constraints judgment and cost 

function value calculation. The option selected from this set that satisfy the constraints and has the lowest cost function 

value is (r+1)-th waypoints. Since the candidate extension nodes generated by the algorithm are discrete, the calculated 

path may have certain twists and turns, and the number of branches is appropriately selected (for example, an odd 

number of branches are selected), and additional join the branch with the same velocity direction with the upper path 

segment can make the path planning result smoother. 

3.5 The Improved Multi-UAV Three-dimensional Sparse A* Algorithm Process 

The improved multi-UAV three-dimensional sparse A* algorithm is based on the single UAV three-dimensional sparse 

A* path planning algorithm, transforming its process into multiple UAV simultaneous operation planning, and 

introducing the planned path length coordination factor and cooperative anti-collision constraint, makes it possible to 

satisfy time coordination and spatial coordination. 

The 3D sparse A* route planning algorithm is shown below: 

 

Table 1: The three-dimensional sparse A* path planning algorithm 

Algorithm 1 :The three-dimensional sparse A* path planning algorithm 

01 :Put the start waypoint as a node into the OPEN list ; 

02 :do while (OPEN !=NULL) 

03 :    Get the node with the lowest total cost function value from the OPEN list as Pmin ; 

04 :    if (‖Pmin- Ptarget‖<0.5Lstep) 

05 :        Return successful running, output waypoints; 

06 :    else 

07 :        Put Pmin to the CLOSED list ; 

08 :        According to the node Pmin to expand optional nodes, generate the set of nodes to be selected as S ; 

09 :        Traversing nodes in S to determine whether it satisfies the performance constraints of UAV; 

10 :        if (Exist node(s) in S that satisfy constraints) 

11 :            Calculate the total cost function value of node(s) that satisfy constraints in S; 

12 :            Put node(s) in S that satisfy constraints to the OPEN list ; 

13 :            Sort the OPEN list ; 

14 :        end if 

15 :    end if 

16 :loop  

17 :Return failed running ; 

Comments : A node is a data structure that contains parent and child node indexes and information of a waypoint. 

 

The improved multi-UAV three-dimensional sparse A* algorithm is shown below: 

 

Table 2: The improved multi-UAV three-dimensional sparse A* path planning algorithm 

Algorithm 2 :The improved multi-UAV three-dimensional sparse A* path planning algorithm 

01 : Set parameters and coefficients in the algorithm; 

02 : Set the count of planned waypoints (abbreviated as CPW) for all UAVs to be 1; 

03 : Set the collaborative required count of waypoints (abbreviated as CPCW) to be 2 ; 

04 :do while (all UAVs’ computing state are not complete) 

05 :    Find the UAV with the smallest CPW as the current extending UAV, if there are multiple minimum values, 

choose one randomly among them; 

06 :    do while (OPEN of the current extending UAV != NULL) 

07 :        Get the node with the lowest total cost function value from the OPEN list of the current extending UAV 

as Pmin ; 

08 :        if (‖Pmin- Ptarget,the current extending UAV‖<0.5Lstep,the current extending UAV) 

09 :            Set the current extending UAV ’s computing state to be complete and successful ; 

10 :            break; 

11 :        else 

12 :            Put Pmin to the CLOSED list of the current extending UAV; 

13 :            According to the node Pmin to expand optional nodes, generate the set of nodes to be selected as S ; 
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14 :            Traversing nodes in S to determine whether it satisfies the performance constraints of the current 

extending UAV (includes the anti-collision constraint); 

15 :            if (Exist node(s) in S that satisfy constraints) 

16 :                Calculate the total cost function value of node(s) that satisfy constraints in S (The total cost function 

includes the planned path length coordination factor ); 

17 :                Put node(s) in S that satisfy constraints to the OPEN list of the current extending UAV; 

18 :                Sort the OPEN list of the current extending UAV; 

19 :                (CPW of the current extending UAV)++; 

20 :            end if 

21 :            if  (CPW of the current extending UAV equals CPCW) 

22 :                break ; 

23 :            end if 

24 :        end if 

25 :        if (All of the CPWs are equal to CPCW) 

26 :            CPCW++ ; 

27 :        end if 

28 :    loop 

29 :    if (OPEN of the current extending UAV == NULL) 

30 :        Set the current extending UAV ’s computing state to be complete and failed; 

31 :        Set the mark that the current extending UAV no longer participates in the calculation; 

32 :    end if 

33 :loop 

34 :Output the waypoints of all successfully planned UAVs; 

35 :Compute the recommended cruising speed that based on the path length of all successfully planned UAVs; 

Comments : When a UAV ’s computing state to be set as complete and successful, it still participates in the 

judgment of constraints if other UAVs need. 

4. Collaborative Path Planning Correction Mechanism 

4.1 Correlation-impact Degree Model Of Multi-UAV Path Based On Sudden Threat 

During the flight of the UAV in accordance with the planned path, unpredictable threats may occur on its path, which 

requires the planning system to have a faster calculation speed and be able to handle sudden threat situation. Therefore 

the mechanism for planning corrections to existing paths is proposed. When a sudden threat occurs, information about 

the sudden threat can be obtained. Compared with the planned paths, the degree of impact of the sudden threat on the 

multi-UAV paths can be obtained. Based on this, the collaborative path planning correction mechanism is proposed. 

The process of calculating the correlation-impact degree is shown as follows: 

1: Obtain the current real-time location of each UAV; 

2: Add a sudden threat to the threat information set; 

3: Traverse the threat information set, at same time traverse each UAV from the current location to the last waypoint, 

and calculate whether the sudden threat has an impact on the planned paths (including the sudden threat has no 

effect, the sudden threat has generated a threat zone, and the sudden threat has generated a no-fly zone, etc.. In 

case of the impact exist, when traversing waypoints of paths, the location of the specific affected section can also 

be calculated, and the estimated time contact to the threat can be obtained. 

4.2 Using Of Correlation-impact Degree Model 

After the correlation-impact degree of sudden threat is obtained, different path correction mechanisms can be designed 

according to the degree of impact. Different correction mechanisms can be adopted under different impact situations. 

Three path correction mechanisms are proposed as follows: 

CASE 1: The sudden threat has no impact on the paths, and each UAV should fly in accordance with its planned path. 

CASE 2: The sudden threat affects paths. If the estimated time contact to the threat is greater than a certain multiple of 

the time of re-planning calculation. The current real-time location of each UAV is used as a start waypoint to add a 

sudden threat to the threat information set. Carry out re-planning calculation; 

CASE 3: The sudden threat affects paths. If the estimated time contact to the threat is smaller than a certain multiple 

of the time of re-planning calculation. The current real-time location of each UAV is used as a start waypoint to add a 

sudden threat to the threat information set. It needs to geometrically design the path to bypass the threat or start from 

the location close to the threat, then plan and integrate existing paths to form new paths and fly according to new paths. 
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5. Experimental Results And Conclusions 

5.1 Comparison Between Different Minimum Safety Distance 

As shown in the following Figure 4, the left one is the condition with minimum safety distance equals 0.5km, the right 

one is 1.5km. There are a total of 39 mountain peaks, 7 radars, 6 enemy missiles, and 4 atmospheric threats in the 

environment. The environment size is 130km×130km. 

 

 

Figure 4: Angel partition in the horizontal plane 

 
As shown in Figure 4, the cooperative anti-collision constraint has the effect it should have. 

5.2 Comparison Between Different Planned Path Length Coordination Factor And Environments 

As shown in the following Table 1, Case 1 has the environment with no peak, radar or missile, Case 2 has a total of 4 

mountain peaks, 3 radars, 1 enemy missile, and 1 atmospheric threat in the environment, Case 3 has a total of 39 

mountain peaks, 7 radars, 6 enemy missiles, and 4 atmospheric threats in the environment. The environment size is 

130km× 130km. In three cases, the start waypoint of the 4 UAVs remains unchanged, and the target waypoint takes 

random value within range [75km~100km, 75km~100km, minimum permissible height]. The data presented were 

obtained from at least 40 simulations. The simulations calculated the variance of count of segments divided by average 

number of count of segments as an indicator of coordination. 

 

Table 3: Variance of count of segments divided by average number of count of segments 

 Case 1 Case 2 Case 3 

Ccooperate=0.0 9.5051 7.2217 3.4494 

Ccooperate=0.01 9.5014 7.1091 3.9270 

 

 
The results show that when the environment is not too complex (in Case 2), the time coordination has the best 

performance. Too complicated environment will make the time coordination performance worse. It is because other 

factors in the complex environment mask the performance of the planned path length coordination factor. 
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5.3 Scenario With Sudden Threat Occurs 

As shown in the following Figure 5, the figure shows the scenario sudden threats were added from outside at two 

moments. There are a total of 4 mountain peaks, 3 radars, 1 enemy missile, and 1 atmospheric threat in the environment. 

The environment size is 130km×130km. 

 

 

Figure 5: Scenario with sudden threat occurs 

 

The results show that the collaborative path planning correction mechanism under a dynamic environment can 

effectively deal with the sudden threat in the planning environment. 

5.4 Conclusions 

In this paper, a multi-UAV three-dimensional path planning method based on sparse A* algorithm is proposed. By 

comparing with the simulation without the planned path length coordination factor, the simulation results show that 

the improved sparse A* algorithm can reasonably and effectively carry out multi-UAV path planning and meet the 

time-space coordination. And the collaborative path planning correction mechanism under a dynamic environment can 

effectively deal with the sudden threat in the planning environment, so that the UAV can change the path in real time 

and normally perform the task when possible sudden threat occurs. 

The A* algorithm has a wide application in UAV path planning. The cooperative anti-collision constraint and the 

planned path length coordination factor proposed in this paper is working in the space-time coordination of multi-UAV 

path planning, but there is still a lot of room for optimization. The idea of achieving time coordination through path 

length coordination, can further directly use the flight time so that it can be closer to real situation, and can do this by 

making certain adjustments to the existing processes and architectures. What’s more, how to cooperate with the further 

modification and smoothing of the planned path to make the results of the algorithm more close to the actual application 

is also the key direction of the future work. 
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