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Abstract

In this study, an iterative learning control method for precise aircraft trajectory tracking is presented.

Given a trajectory to be followed by an aircraft whose dynamical model is known, the proposed algo-

rithm improves the system performance in following the trajectory anticipating recurring disturbances and

proactively compensating for them, using the spatial and temporal deviations suffered by previous flights.

The results presented show a significant reduction of the trajectory tracking error in few iterations for a

type of operations in which precision is essential: continuous descent approaches. The results prove the

effectiveness of this method applied to commercial aircraft trajectory tracking.

1. Introduction

Global air traffic growth in both volume and complexity requires the modernization of the Air Traffic Management

(ATM) system. The Single European Sky ATM Research1 (SESAR) and other international initiatives work to develop

an optimization framework for trajectory-based operations, which assigns four-dimensional (4D) trajectories to flights

based on the stakeholders’ preferences and priorities, improving flight efficiency and reducing environmental impact

while also meeting the expected demands for increased capacity. A 4D trajectory consists of the three spatial dimen-

sions of the aircraft path and the additional component of time, meaning that any delay is considered as a distortion

of the trajectory as much as a deviation in the position of the aircraft. The designed 4D trajectories must be precisely

followed by the aircraft to avoid conflicts with other aircraft and ensure the safety of the flight and an efficient exploita-

tion of the airspace. However, mainly because of wind and temperature forecast errors or unpredictable weather events

such as storms, some level of uncertainty will remain, resulting in deviations that cannot be compensated by the usual

aircraft trajectory tracking controllers, which react to noise and unexpected disturbances as they occur [1].

The method here exposed addresses this problem by using an Iterative Learning Control (ILC) scheme which

is able to improve the precision of the aircraft in following the trajectory taking into account the deviations suffered

by previous flights. This method is especially suitable for air spaces with high traffic density, where time between

consecutive flights is short enough to assume similar atmospheric conditions and therefore similar disturbances. This

typically occurs in busy air spaces such as terminal maneuvering areas in arrival and departure procedures, in which

precision in trajectory tracking is crucial. In particular, the ILC paradigm has been studied for Continuous Descent

Approaches (CDAs). CDA operations are embraced in the general term Continuous Descent Operations (CDO), in

which aircraft descend from the cruise altitude to the final approach fix at or near idle thrust, ideally in a low drag

configuration, without level segments at low altitude, minimizing the need for high thrust levels to remain at a constant

altitude and reducing the environmental impact. According to [2], the terms CDO and CDA are interchangeable and

should be read and understood in the same context. This case is of special interest because for an effective CDA
implementation, accurate trajectory tracking control schemes must be employed to avoid potential conflicts between

the arriving and departing aircraft together with appropriate airspace design and effective Air Traffic Control (ATC)
procedures. A CDA may be part of a Standard Terminal Arrival Route (STAR) procedure, in which case it is known as

Optimized Profile Descent (OPD) [3].

Information sharing is key to the application of ILC to precise aircraft trajectory tracking, since this method is

based on using data from previous aircraft to minimize trajectory deviations of the following flights. This information

1https://www.sesarju.eu/
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is not yet available, though this obstacle will be overcome with the System Wide Information Management (SWIM),

which is part of the ICAO Global Air Navigation Plan [4], and whose purpose is to perform a common platform where

aircraft will be fully connected as an information node, enabling full participation in collaborative ATM processes with

exchange of data, including meteorology and the detailed route of the aircraft defined in 4D. In this paper, intended and

actually flown trajectories of previous aircraft are assumed to be available.

ILC is based on the idea that the performance of a control system that executes the same task multiple times can

be improved by learning from previous executions. In particular, precision in the execution of a task can be improved

by incorporating error information into the control law for subsequent iterations. In doing so, accurate performance

can be achieved with low transient tracking error despite recurrent disturbances. ILC paradigm emerged from industrial

robotics applications to improve trajectory tracking precision of robot manipulators in repetitive tasks [5], and has been

widely applied over the last three decades. In [6], the main results in ILC analysis and design are surveyed. Several

textbooks on ILC are available, such as [7], which treats both ILC for linear and nonlinear systems, and [8], which

focuses on real time applications. ILC has recently been applied to precise trajectory tracking of aerial robots. In [9], an

ILC approach has been applied to precise quadrocopter trajectory tracking. This work can be viewed as an extension of

the results presented in [10], where a least-squares based learning rule was proposed to perform aggressive maneuvers

with quadcopters, which consist in steering these systems quickly from one state to another. Other ILC paradigms have

been applied to trajectory tracking for Unmanned Aerial Vehicles (UAV). See for example [11] and references therein.

To the best knowledge of the authors, ILC has not been applied yet to precise aircraft trajectory tracking.

In this paper, the possibility of applying the optimization-based ILC method presented in [9] to improve precision

in aircraft trajectory tracking has been investigated. This ILC scheme requires the system dynamics to be repetition-

invariant, which means that the same dynamical system (in this context, the aircraft) executes the same task (flying

the same planned trajectory) in each iteration. In a more realistic scenario, consecutive flights along the same path are

in general carried out by different aircraft and follow different trajectories. The knowledge transfer problem among

dynamical systems and among trajectories is not addressed in this paper due to its complexity, and will be subject of

future research. The ILC problem is solved in two steps, both relying on a nominal model of the aircraft, in which input

and state constraints are explicitly taken into account. The first step consists in the estimation of the model error and

recurrent disturbances affecting the flight of an aircraft along a trajectory using a time-varying Kalman filter. In the

second step, optimization techniques are employed to determine an updated control input to optimally compensate for

the recurrent disturbances of the following aircraft trajectory tracking. An advantage of using the ILC method is that it

can be made non intrusive with respect to the trajectory tracking control system of the aircraft, since a new reference

trajectory can be computed as part of the input update and be fed into the flight management system of the following

aircraft. This way, the feedback trajectory tracking control reduces non-repetitive disturbances while the ILC is in-

tended to reject repetitive disturbances. The ILC method has been implemented in the MATLAB/Simulink platform, a

graphical programming environment for modeling and simulating dynamical systems developed by MathWorks2.

In the experiments presented in this paper, the CDA trajectories to be followed have been generated using optimal

control techniques in which the actual dynamical model of the aircraft has been taken into account, ensuring the feasi-

bility of the planned trajectories. The resulting optimal control problems have been solved using DIDO, a MATLAB

application based on the pseudospectral method developed by Elissar Global3. This application, besides the optimal

control and the corresponding optimal trajectory, returns the Hamiltonian, costates, path covectors, and endpoint cov-

ectors. This information, together with classical tools such as Pontryagin’s Maximum Principle, is essential to verify

the optimality of the numerical results.

The experiments and results have been carried out in a simulated environment. A realistic scenario has been built

in the MATLAB/Simulink platform using commercial aircraft data from the Base of Aircraft Data (BADA), which is an

Aircraft Performance Model (APM) developed and maintained by EUROCONTROL4 with the collaboration of aircraft

manufacturers and airlines, specifically designed for simulation and prediction of aircraft trajectories for research and

operations in ATM. The BADA APM has two components: model specifications, which provide the theoretical models

used to calculate aircraft performance parameters, and data sets, which give the aircraft-specific coefficients. There are

two families of the BADA APM, based on the same modeling approach and with the same components: BADA Family

3 and BADA Family 4. The latest release of the first one has been used in this paper [12].

The application of the ILC technique to precise aircraft trajectory tracking would be an innovative solution to

increase predictability of trajectories in the future trajectory-based operations paradigm. Higher precision in trajectory

tracking implies an improvement of the aircraft performance predictability and therefore of the air traffic management

system capacity. Airlines can also benefit from this higher predictability by reducing the number of alterations in

following their designed trajectories, which entails a reduction of costs and emissions.

2https://es.mathworks.com/
3http://www.elissarglobal.com/industry/products/
4https://www-test.eurocontrol.int/services/bada
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The paper is organized as follows. The model of the aircraft dynamics is derived in Section 2. The general ILC
scheme is presented in Section 3 and the method for generating the CDA reference trajectory is presented in Section 4.

The experimental setup is described in Section 5 and the results of the application of the ILC algorithm to aircraft

trajectory tracking in Section 6. Finally, Section 7 contains the conclusions.

2. Aircraft dynamics

In this section, the dynamic model of the aircraft used in the simulated environment will be described.

2.1 Equations of Motion

A common three-degree-of-freedom dynamic model has been used which describes the point variable-mass motion of

the aircraft over a non-rotating flat Earth model [13]. In particular, a symmetric flight has been considered. Thus, it

has been assumed that there is no sideslip and all forces lie in the plane of symmetry of the aircraft. The following

equations of motion of the aircraft have been considered:

V̇(t) =
T (t) − D(he(t),V(t),CL(t)) − m(t) · g · sin γ(t)

m(t)

χ̇(t) =
L(he(t),V(t),CL(t)) · sin µ(t)

m(t) · V(t) · cosγ(t)

γ̇(t) =
L(he(t),V(t),CL(t)) · cosµ(t) − m(t) · g · cosγ(t)

m(t) · V(t)

ẋe(t) = V(t) · cos γ(t) · cosχ(t) (1)

ẏe(t) = V(t) · cos γ(t) · sin χ(t)

ḣe(t) = V(t) · sin γ(t)

ṁ(t) = −T (t) · η(V(t)).

The three dynamic equations in (1) are expressed in an aircraft-attached reference frame, the wind axes (xw, yw, zw),

and the three kinematic equations are expressed in a ground based reference frame, the Earth reference frame (xe, ye, ze),

as shown in Fig. 1.

The states of the system (1) are the true airspeed, V , the heading angle, χ, the flight path angle, γ, the position,

xe, ye, he, and the aircraft mass, m. Thus, x(t) = (V(t), χ(t), γ(t), λe(t), θe(t), he(t),m(t)). The control inputs are the bank

angle, µ, the engine thrust, T , and the lift coefficient, CL. Thus, u(t) = (T (t), µ(t),CL(t)). Parameter η is the speed-

dependent fuel efficiency coefficient. Lift, L = CLS q̂, and drag, D = CDS q̂, are the components of the aerodynamic

force. Parameter S is the reference wing surface area and q̂ = 1
2
ρV2 is the dynamic pressure. A parabolic drag polar

CD = CD0 + KC2
L
, and an International Standard Atmosphere (ISA) model are assumed. The lift coefficient CL is a

known function of the angle of attack α and the Mach number.
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Figure 1: Aircraft state and forces.
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2.2 Flight Envelope Constraints

Flight envelope constraints are derived from the geometry of the aircraft, structural limitations, engine power, and

aerodynamic characteristics. The performance limitations model and the parameters have been obtained from BADA.

0 ≤ he(t) ≤ min[hM0, hu(t)], γmin ≤ γ(t) ≤ γmax,

M(t) ≤ MM0, mmin ≤ m(t) ≤ mmax,

V̇(t) ≤ āl, CvVs(t) ≤ V(t) ≤ VMo, (2)

γ̇(t)V(t) ≤ ān, 0 ≤ CL(t) ≤ CLmax
,

Tmin(t) ≤ T (t) ≤ Tmax(t), µ(t) ≤ µ̄.

In (2), hM0 is the maximum operational altitude and hu(t) is the maximum operative altitude at a given mass (it

increases as fuel is burned). M(t) is the Mach number and MM0
is the maximum operating Mach number. Cv is the

minimum speed coefficient, Vs(t) is the stall speed, VM0
is the maximum operating Calibrated Airspeed (CAS) and ān

and āl are, respectively, the maximum normal and longitudinal accelerations for civilian aircraft. Finally, Tmin(t) and

Tmax(t) correspond to the minimum and maximum available thrust, respectively, and µ̄ corresponds to the maximum

bank angle due to structural limitations.

2.3 Longitudinal dynamics

In this work, ILC is used for precise trajectory tracking of the vertical profile of a CDA. Therefore, the motion of the

aircraft is limited to a vertical plane, i.e., with constant course and thus constant heading angle χ. Without loss of

generality, we assume that the heading angle is zero, that is χ = 0. We also suppose that the aircraft performs a leveled

wing flight, thus the bank angle is zero, that is µ = 0.

The state variables are then

x(t) = (V(t), χ(t), γ(t), λe(t), θe(t), he(t),m(t))

and the control variables,

u(t) = (T (t),CL(t)).

The equations of motion are reduced to:

V̇(t) =
T (t) − D(he(t),V(t),CL(t)) − m(t) · g · sin γ(t)

m(t)

γ̇(t) =
L(he(t),V(t),CL(t)) − m(t) · g · cos γ(t)

m(t) · V(t)

ẋe(t) = V(t) · cosγ(t) (3)

ḣe(t) = V(t) · sin γ(t)

ṁ(t) = −T (t) · η(V(t)).

To perform an optimized descent, the throttle should be near the idle detent position. Then, the minimum and

maximum thrust constraints in (2) are the thrust idle plus a negative and a positive margin, respectively. Apart from

the thrust constraints, the flight envelope constraints remain the same as in (2), except for the one referring to the bank

angle, since it is assumed to be zero.

3. Iterative Learning

In this section, following [9], the ILC method implemented in this paper for precise aircraft trajectory tracking will be

introduced. The starting point of the learning algorithm is a time-varying nonlinear model of a real dynamic system:

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t),
(4)

4
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where u(t) ∈ Rnu is the control input, x(t) ∈ Rnx is the state, and y(t) ∈ Rny is the output, and f and g are assumed to

be continuously differentiable in x and u. Constraints on the input u(t) and the state x(t), and their time derivatives are

represented by

Z q(t) � qmax, (5)

where

q(t) =

[
x(t), u(t), ẋ(t), u̇(t), . . . ,

dm

dtm
x(t),

dm

dtm
u(t)

]
(6)

and qmax ∈ R
nq . The inequality is defined component-wise and nq is the total number of constraints, Z is a constant

matrix of appropriate dimensions. In this case, the time-varying nonlinear model of the aircraft and its constraints are

described in (3) and (2), where we have assumed that all state variables can be measured, therefore y(t) = x(t).

The goal of the presented learning algorithm is to precisely track a feasible predefined output trajectory y∗(t)

over a finite time interval t ∈ T = [t0, t f ], with t f < ∞. The desired output trajectory y∗(t) is here the result of solving

an optimal control problem based on the system dynamics (4).

The system’s behavior (4) can be represented as a linear time-varying system

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t)

˙̃y(t) = C(t)x̃(t) + D(t)ũ(t), t ∈ T ,
(7)

where the time-dependent matrices A(t), B(t),C(t),D(t) are the corresponding Jacobian matrices of the nonlinear func-

tions f and g with respect to x and u. The triple (ũ(t), x̃(t), ỹ(t)) represent small deviations from the desired trajectory

and its corresponding state and input (x∗(t), u∗(t), y∗(t)),

ũ(t) = u(t) − u∗(t),

x̃(t) = x(t) − x∗(t), (8)

ỹ(t) = y(t) − y∗(t).

In a real system, measurements are only available at fixed time intervals, therefore a discrete-time representation

is needed, which results in the following linear, time-varying difference equations,

x̃(k + 1) = AD(k)x̃(k) + BD(k)ũ(k)

ỹ(k) = CD(k)x̃(k) + DD(k)ũ(k),
(9)

where k ∈ K = {0, 1, ...,N − 1} ,N < ∞ represents the discrete-time index. The desired trajectory is represented by a

N-sample sequence

(u∗(k), x∗(k + 1), y∗(k + 1)), k ∈ K , (10)

with given initial state x∗(0). The input and state constraints (5) are similarly transformed

Zq̃(k) � qmax(k), (11)

where q̃(k) is the deviation of q(k) from the corresponding nominal values q∗(k) defined analogously to (8), and dis-

cretized.

3.1 Lifted system representation

It is useful to replace the model described above by a lifted vector representation, mapping the finite input time series

ũ(k), k ∈ K into the corresponding output time series ỹ(k), k ∈ K for each trial [14]. The deviations with respect to the

desired trajectory (10) are then

u = [ũ(0), ũ(1), . . . , ũ(N − 1)]T ∈ RNnu

x = [x̃(1), x̃(2), . . . , x̃(N)]T ∈ RNnx

y =
[
ỹ(1), ỹ(2), . . . , ỹ(N)

]T
∈ RNny .

(12)

Using this notation, the linear system (9) can be described as
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x = Fu + d0

y = Gx + Hu,
(13)

The lifted matrix F ∈ RNnx×Nnu is composed of the matrices F(l,m) ∈ R
nx×nu , 1 ≤ l,m ≤ N, that is

F =



F(1,1) . . . F(1,N)

...
. . .

...

F(N,1) . . . F(N,N)


, (14)

where

F(l,m) =



AD(l − 1) . . .AD(m)BD(m − 1) if m < l

BD(m − 1) if m = l

0 if m > l.

Matrices G and H are block-diagonal and analogously defined by

G(l,m) =


CD(l) if l = m

0 otherwise

and

H(l,m) =


DD(l) if l = m

0 otherwise,

respectively, where, G(l,m) ∈ R
ny×nx and H(l,m) ∈ R

ny×nu . Vector d0 contains the free response of the system (9) to the

initial deviation x̃(0) = x̃0 ∈ R
nx ,

d0 =

(AD(0)x̃0)T , (AD(1)AD(0)x̃0)T , . . . ,


N−1∏

i=0

AD(i)x̃0



T 

T

.

3.2 Disturbance estimation

In order to take into account the recurrent nature of the problem setting, the system (13) is written as

x j = Fu j + d j

y j = Gx j + Hu j,
(15)

where the subscript j indicates the jth execution of the desired task and d j represents the repetitive disturbance along

the reference trajectory, which shows only slight random changes, ω j, between iterations. Taking into account process

and measurement noise, captured in the random variable µ j, the evolution of the learning over consecutive trials can be

represented as a Kalman filter model [15]

d j = d j−1 + ω j−1

y j = Gd j + (GF + H)u j + µ j,
(16)

where both stochastic zero-mean Gaussian white noise variables, ω j ∼ N(0,Ω j) and µ j ∼ N(0,M j), are trial-

uncorrelated and assumed to be independent. Matrices Ω j and M j represent the noise covariances and can be charac-

terized as diagonal matrices. In the aircraft simulation used for this study, noise has been introduced as measurement

errors and variations in the aircraft model and the wind speed.

The Kalman filter estimates the current error d j taking into account the output signals y0, y1, . . . , y j from previous

trials. Given the initial values of the error estimate, d̂0, and the error covariance matrix, P0 = E[(d0 − d̂0)(d0 − d̂0)T ],

the disturbance estimate is calculated as

d̂ j = d̂ j−1 + K j

(
y j −Gd̂ j−1 − (GF + H)u j

)
, (17)

where K j is the optimal Kalman gain

K j =
(
P j−1 + Ω j−1

)
GT

(
G

(
P j−1 + Ω j−1

)
GT + M j

)−1
.
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3.3 Input update

The learning update consists in deriving a model-based update rule that computes a new control input u j+1 ∈ R
Nnu in

response to the estimated disturbance d̂ j, that is, minimizing the deviation from the nominal trajectory in the next trial.

Since this deviation x j+1 is unknown, the expected value of x j+1 given all past measurements is considered,

E
[
x j+1

∣∣∣y1, y2, . . . , y j

]
= Fu j+1 + d̂ j. (18)

The update rule can be expressed by the following optimization problem:

min
u j+1

‖Fu j+1 + d̂ j‖ℓ + α‖Du j+1‖ℓ

subject to Lu j+1 ≤ qmax,

(19)

where constraints (11) are explicitly taken into account, and α ≥ 0 and the matrix D have the aim of penalizing the

input or approximations of its derivatives in order to enforce the smoothness of the optimal problem solution. The

vector norm ℓ, with ℓ ∈ {1, 2,∞}, of the minimization problem (19) affects the result and convergence of the learning

algorithm and should be chosen in accordance with the performance objectives.

The update law defined in (19) can be formulated as a standard convex optimization problem of the form

min
z

(
1

2
zT Vz + vT z

)

subject to Wz ≤ w and η1 ≤ z ≤ η2,

(20)

where z ∈ Rnz represents the vector of decision variables. Vectors v,w and matrices V,W have appropriate dimensions.

In the experiments herein exposed, the input is updated only if the state variables’ deviations from the desired trajectory

exceed a pre-specified value. Otherwise, the same input is applied to the next iteration. The maximum deviation

allowed may be different for each state variable and each part of the trajectory, e.g., in the case of a CDA, deviations

at the beginning of the descent phase may be greater than at the end part of the trajectory, where high precision is

required.

A scaling of the original signals u(t), x(t), y(t) in (4) is essential to guarantee reasonable results in the optimization

problem. The scaling, exemplarily shown on the system’s state x(t), reads as

xs = S xx, S x ∈ R
Nnx×Nnx (21)

with xs representing the scaled version of a lifted state vector x and S x being the corresponding scaling matrix, usually

represented by a diagonal matrix. Additionally, a state weighting matrix may be useful to give greater importance to

some of the state variables over the rest.

As mentioned in the introduction, one of the advantages of the iterative learning algorithm is its non intrusiveness

with respect to the aircraft’s existing trajectory tracking controller, since a new reference trajectory can be provided to

the following aircraft rather than a control input. Once the updated input u j+1 is calculated in (19), the new reference

trajectory is obtained by introducing this input into the lifted model, dismissing the disturbances except for the initial

deviation error

xN = xN + xd, with xN = Fu j+1 + d0
j+1

yN = yN + yd, with yN = GxN + Hu j+1,
(22)

where xN ∈ R
Nnx is the new reference state variable lifted vector, yN ∈ R

Nny is the new reference output lifted vector,

and xd and yd are the lifted vectors of the desired state and output, respectively

xd =
[
x∗(1), x∗(2), . . . , x∗(N)

]T
∈ RNnx

yd =
[
y∗(1), y∗(2), . . . , y∗(N)

]T
∈ RNny .

(23)

4. Trajectory planning

In this section, the method to generate a reference trajectory to be followed will be described.

As said before, in this paper, the ILC paradigm is applied to follow a CDA trajectory in the the vertical plane

generated using an optimal control technique in which the horizontal distance has been minimized. The european
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definition of CDA, as approved by the stakeholders, is: an aircraft operating technique in which an arriving aircraft

descends from an optimal position with minimum thrust and avoids level flight to the extent permitted by the safe

operation of the aircraft and compliance with published procedures and ATC instructions. According to [3], an optimum

CDA starts from the Top-Of-Descent (TOD) and uses descent profiles that reduce controller-pilot communications and

segments of level flight. Furthermore it provides for a reduction in noise, fuel burn and emissions, while increasing

flight stability and the predictability of flight path to both controllers and pilots. One of the most important requirements

for successful CDA operations is predictability, thus precise trajectory tracking is essential.

A feasible state trajectory with its corresponding nominal input is the starting point of the iterative learning al-

gorithm. The trajectory is generated via the MATLAB application DIDO using a nominal model of an Airbus A320

aircraft. The input to DIDO is the problem formulation in a structured format, including system dynamics, constraints

and cost function. Besides the optimal control and the resulting trajectory, DIDO automatically outputs the Hamil-

tonian, costates, path covectors, and endpoint covectors for the verification of the solution. A generic CDA has been

considered, starting at the TOD and continuously descending until reaching an altitude of 2500 m at a speed of 150 m/s.

The final conditions of altitude and speed of the designed trajectory are compliant with a STAR to complete the landing.

5. Experimental Setup

In this section, the simulated environment in which the experiments have been carried out will be described. It is

composed by:

• a realistic flight simulator,

• an estimator of the disturbances acting on the aircraft, and

• an ILC controller.

The ILC algorithm, which has been implemented in MATLAB, can be summarized as follows.

• Initialization. The first step of the algorithm is to load the trajectory to be followed. As said in Section 4, in this

experiment an optimal desired trajectory has been calculated using a nominal model of the aircraft without taking

into account perturbations. The desired trajectory, y∗ = x∗, and the corresponding input, u∗, are loaded from a

file provided by the optimal control software DIDO. This model does not coincide with the aircraft model used

in the flight simulator, which is more realistic, containing perturbations. Then, settings and parameter values of

the learning algorithm are introduced in the main program, the system is linearized about the desired trajectory,

converted to a discrete-time system, and noted as a lifted domain representation. Finally, the Kalman gains are

computed. To test the robustness of the ILC controller to modeling errors, the aircraft parameters entered here

are slightly different from those used in the flight simulator and in trajectory planning. The optimization problem

is now set up.

• j-th iteration. Using the most recent feed-forward input generated by the ILC algorithm, the corresponding

trajectory of the aircraft is generated by the flight simulator. The simulator has been developed using a 3-DOF

longitudinal model of an Airbus A320 aircraft implemented in Simulink, a widely used software in aircraft

simulation [16]. The state and control variables are the same as those used in the ILC algorithm model. We

assume that all states can be measured. Weather perturbations, model uncertainties and measurement noise are

introduced in the simulated environment. After each execution of the trajectory tracking experiment, the results

are stored and compared to the desired trajectory. The resulting error vector is fed into a Kalman filter providing

an estimate of the tracking error, as described in Section 3.2.

• j + 1-th iteration. Based on the tracking error estimated after the j-th iteration, the simulated aircraft is set to the

initial position and the update step of the learning algorithm is executed, which, if necessary, determines a new

reference trajectory to be tracked in the j + 1-th iteration optimally compensating for the estimated error.

6. Results

In this section, the results of the application of the ILC scheme to precise aircraft trajectory tracking in CDAs will be

reported. As said before, although the ILC algorithm is able to tackle 4D trajectories, in this section, for the sake of

clarity, only the corresponding 3D paths will be reported.
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Figure 2: Evolution of the path xe − he over iterations.

Fig. 2(a) shows the evolution of the tracking of the desired path over iterations. This desired path, related to the

CDA obtained in the trajectory planning in Section 4, is shown in dashed black line. Figure 2(b) shows a detail of the

same evolution in the final part of the path. The input applied in the first execution is the nominal input obtained in

the desired trajectory generation, and the resulting trajectory tracked by the aircraft is generated by the flight simulator,

as described in Section 5. After each execution the input is updated, if needed, and again the simulated aircraft tries

to follow the new reference trajectory. As shown in Fig. 2(a) and Fig. 2(b), in the first execution the path followed

by the simulator falls far below the desired one due to modeling and disturbance errors, but the ILC scheme rapidly

learns from the first executions, compensating for the recurring disturbances and achieving a very precise tracking of

the designed CDA trajectory after only three iterations.
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Figure 3: Evolution of the thrust and lift coefficient over iterations.

As shown in Fig. 3, the main control action is carried out by the thrust control input, which tends to converge

over iterations whereas the lift coefficient input remains almost unchanged. Despite the convergence of the inputs, both

the trajectory and the thrust vary over iterations due to non-repetitive disturbances, which would be compensated by
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the feedback trajectory tracking controller of the aircraft.

The state weighted error in Fig. 4(a) allows the learning performance to be evaluated over iterations. It is

calculated as:

ew, j = ‖S y j‖2, (24)

where S is the weighted scaling matrix of the state variables and y j is the measured output vector. Similarly, the vertical

and horizontal position errors are shown in Fig. 4(b), without scaling.

As expected, since the ILC scheme is intended to compensate for repetitive disturbances, the weighted state error

and the horizontal and vertical position errors converge to the system noise level, and not to zero, due to non-repetitive

disturbances.
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Figure 4: Evolution of the weighted state and horizontal and vertical position errors over iterations.
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Figure 5: Reference path associated with the reference trajectory to be provided to the aircraft in the tenth iteration of

the ILC algorithm to precisely track the desired trajectory.

As an example, the reference path generated in the tenth iteration of the ILC algorithm to be provided to the

aircraft in the next iteration is depicted in Fig. 5. As explained before, the control paradigm here proposed is non-

intrusive with respect to the underlying aircraft feedback controller since it calculates, at each iteration, a reference

trajectory for the following aircraft rather than a control input to precisely track the desired trajectory.

7. Conclusions

Given an arrival procedure, the dynamical model of an aircraft and a trajectory to be followed compliant with the

procedure, an optimization-based iterative learning approach has been applied to improve the precision of the aircraft
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in following the trajectory, taking into account the deviations suffered by other flights operated with the same aircraft

model and assuming that all the flights successively follow the same trajectory with short time-based separation and

therefore are subject to similar recurrent disturbances. In this approach, optimality is pursued in both the estimation of

the recurring disturbance and in the calculation of the input update, which optimally compensates for the disturbance.

The method proposed has been successfully applied to trajectory tracking of the simulation of commercial aircraft

in continuous descent approaches. The descent flight of an Airbus A320 aircraft has been modeled in the vertical

plane, assuming constant course and leveled wing flight and International Standard Atmosphere conditions. Weather

perturbations, model uncertainties and measurement noise have been introduced in the model. These noise signals vary

from iteration to iteration and are assumed to be trial-uncorrelated sequences of zero-mean Gaussian white noise. It

has been shown that precision in aircraft trajectory tracking can be improved by pure feed-forward adaptation of the

control input.

Future work will include applying iterative learning control techniques to determine the top of descent under

given atmospheric conditions to improve precision in reaching the final fix in continuous descent approaches. Addi-

tionally, it is intended to extend the approach here proposed to flights not restricted to the vertical plane and applying

it to other flight procedures.
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