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Abstract
An approach to modelling random phenomena, which are typical for actual particle phase in two-phase
gas-particle flows, is developed. The collision of non-spherical particles with the wall, scattering of
rebounded particles, collisions between particles, and the particle size dispersion are considered. Two
kinds of the particle shape are taken in calculations: parallelepiped, and parallelepiped with cut vertices.
The three-dimensional particle-wall collision problem is solved numerically using a non-sliding collision
model. Scattering indicatrices for non-spherical particles rebounded from a smooth wall surface are stud-
ied systematically by direct numerical simulation of rebounding the great number of particles. A kinetic
model is used for modelling a "collisional gas" of particles in the carrier gas flow. Particle size distri-
bution is described by the lognormal law. The developed approach is incorporated into the gas-particle
flow model, and detailed investigation of the particle phase flow structure is carried out for high-speed
gas-particle flow over a blunt body (cylinder). The hierarchy of significance of the considered effects de-
pending on the particles’ and flow parameters is constructed. The distribution of the particle energy loss
in particle-wall collisions along the body contour is found for particles of different shape. The shielding
effect of the particle-particle collisions on the energy loss is discussed.

1. Introduction

The key engineering problems in aerodynamics of high-speed aerospace vehicles intended for flight in the dusty at-
mosphere can be formulated as follows: (1) how does the dispersed phase influence the drag force and heat transfer,
and (2) what are the rate of surface erosion due to particles’ impacts. As is seen, the prime and immediate interest
is focused on the functionals of a two-phase gas-particle flow. Experimental and theoretical results on the subject
obtained by 2007 are accumulated in [1]. Eventually these functionals are determined by the flow structure and the
mechanism of particle-wall impact interaction. The investigation of reasons of why a carrier gas and a dispersed phase
behave in one way or another leads to the necessity of considering the micro- and macro-phenomena in a two-phase
gas-particle medium. The study of these phenomena refers to the fundamentals of the multiphase flow mechanics.
From this viewpoint, the key problems include the gas-particle interaction, a collision between two or more particles,
the particle-wall interaction, collective effects in a gas-particle mixture and in the flow action on a body surface, the
influence of particles on a carrier gas flow parameters and the like. Specific features of particle phase flow patterns
over bodies, as well as mathematical models of some "elementary" interactions in such flows and the basic regimes of
flows were analyzed in [2]. Different specific aspects of the problem were studied and analyzed later in [3]–[7]. Some
of the most important results entered into the review paper [8].

As in known, the classical theory of two-phase gas-particle flow assumes that particles are equal in size, have
spherical shape, do not collide with each other, and rebound regularly from streamlined surface. In actual gas-particle
flow, these assumptions are not valid. In recent time a considerable number of publications have been devoted to more
realistic effects: interaction of non-spherical particles with the carrier gas flow [9]–[12], non-spherical particle-wall
collisions [13]–[16], flow of polydisperse particle phase [17].

In spite of considerable efforts of many researchers, many questions remains open. The aim of the present study
is to develop theoretical approaches to modelling of some random in nature phenomena in gas-particle flows and to
investigate a high-speed dusty gas flow over a blunt body with taking these phenomena into account.
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2. Three-dimensional particle-wall collision model

A process of non-spherical particle rebound from a solid wall can conclude one or several particle-wall collisions
before a particle flies away. At first we consider an isolated collision of a particle with a flat wall and then investigate
statistic parameters of rebounded non-spherical particles taking account for all collisions during a rebound. Let OXYZ
be the local Cartesian coordinate system with the XZ-plane coincident with the wall surface and the Y-axis normal to
it. Denote the coordinates of the particle gravity center by Xp,Yp,Zp. We introduce also the particle-fixed coordinates
Opξηζ with the axes directed along the particle principal axes of inertia. The angles φ, ψ, ϑ define the particle orientation
with respect to the coordinate system OXYZ (see Fig. 1).

Figure 1: Prismatic particle (rectangular parallelepiped) and prismatic particle with cut vertices; φ, ψ, ϑ are the angles
defining particle orientation in space.

The ’hard particle model’ [18] will be used in simulating the particle-wall collisions. Let the vectors of the
particle translational and angular velocities, Vp and Ωp, and the angles φ, ψ, ϑ be known just before a collision. The
problem is to determine the post-collisional particle velocities Vp and Ωp. Assume that the particle-wall collision
occurs at a point which will be designated as the contact point (point C in Fig. 2). If the contact area is an edge or
a face of a prismatic particle, we consider the geometric center of the edge or the face as the contact point to avoid
an uncertain situation in calculations. The position of the contact point with respect to the particle center of gravity is
defined by the vector rc.

Figure 2: Collision of a non-spherical particle with a wall.

Assuming the collision duration to be very short, so that the particle position relative to the wall surface does
not changes during the collision process, write the equations for the change of the particle momentum and angular
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momentum in the integrated form

mp(V+p − V−p ) ≡ mp∆Vp =

δt∫
0

fc(t)dt ≡ S, ∥Jp∥ (Ω+p −Ω−p ) ≡ ∥Jp∥ ∆Ωp = rc × S, (1)

where mp, ∥Jp∥ are the mass and inertia tensor of the particle, fc, S are the force and the impulse acting on the particle
at the contact point, δt is the time interval in which the force fc acts on the particle, superscripts "−" and "+" signify
the pre- and post-collisional particle parameters (see Fig. 2).

The velocity of the particle contact point Vc, and the particle translational and angular velocities Vp and Ωp are
related by the kinematic equation

Vc = Vp +Ωp × rc. (2)

From this we obtain
∆Vc ≡ V+c − V−c = ∆Vp + ∆Ωp × rc. (3)

Combining Eqs. (1) and (3) yields

1
mp
∥Jp∥ ∆Ωp = rc × ∆Vc − rc × [∆Ωp × rc]. (4)

Equation (4) contains two unknown vectors ∆Vc and ∆Ωp.
Vector ∆Vc can be determined if the restitution coefficients of the normal (anc) and tangential (aτc) to the surface

components of Vc defined by

anc = −
V+cn

V−cn
, aτc =

V+cτ
V−cτ

(5)

are known (here anc < 0 because V−cn < 0 and V+cn > 0). Actually, anc and aτc depend on the particle and wall material,
the particle shape, the collision angle α1 (see Fig. 3), and the pre-collisional particle parameters. In the present study
the coefficient aτc is taken to be zero (this corresponds to non-sliding collision) and the coefficient anc is calulated from
the formula

anc = − exp
[
−0.1(V−cn)0.61

]
(6)

which is obtained from the empirical correlation suggested in [19], when applied to the pre-collision particle normal
velocity. Let up, vp, wp and uc, vc, wc be the components of the vectors Vp and Vc in coordinates OXYZ. Then the
components ∆uc, ∆vc and ∆wc of the vector ∆Vc can be expressed through the components of the vector V−c and the
coefficients anc and aτc as follows:

∆uc = −u−c , ∆vc = −(anc + 1)v−c , ∆wc = −w−c . (7)

It is convenient to describe the particle rotational movement using the particle-fixed coordinates Opξηζ because
the tensor ∥Jp∥ has in this case only diagonal non-zero components Jpξ, Jpη, Jpζ , which are the principal moments of
inertia of the particle. The vector equation (4) written in the coordinates Opξηζ has the form

Ĵpξ∆ωpξ = (ηc∆Vcζ − ζc∆Vcη) − η2
c∆ωpξ + ξcηc∆ωpη + ξcζc∆ωpζ − ζ2

c ∆ωpξ,

Ĵpη∆ωpη = (ζc∆Vcξ − ξc∆Vcζ) − ζ2
c ∆ωpη + ηcζc∆ωpζ + ηcξc∆ωpξ − ξ2

c∆ωpη,

Ĵpζ∆ωpζ = (ξc∆Vcη − ηc∆Vcξ) − ξ2
c∆ωpζ + ζcξc∆ωpξ + ζcηc∆ωpη − η2

c∆ωpζ.

(8)

Here Ĵpi = Jpi/mp (i = ξ, η, ζ), and ξc, ηc, ζc are the components of the position vector rc. The relations (8) represent
the system of the linear algebraic equations for the unknown values ∆ωpξ, ∆ωpη and ∆ωpζ . It can be rewritten in the
matrix form as Ĵpξ + η

2
c + ζ

2
c −ξcηc −ξcζc

−ηcξc Ĵpη + ζ
2
c + ξ

2
c −ηcζc

−ζcξc −ζcηc Ĵpζ + ξ
2
c + η

2
c


∆ωpξ
∆ωpη
∆ωpζ

 =
ηc∆Vcζ − ζc∆Vcη

ζc∆Vcξ − ξc∆Vcζ

ξc∆Vcη − ηc∆Vcξ

 , (9)

Once a solution of (9) is found, the components of Ω+p in the particle-fixed coordinates can be easily obtained:

ω+pξ = ω
−
pξ + ∆ωpξ, ω+pη = ω

−
pη + ∆ωpη, ω+pζ = ω

−
pζ + ∆ωpζ . (10)

Determine a velocity vector V+p in the coordinates OXYZ connected with the wall surface. The direction of V+p
coincides with the direction of movement of a particle just after its collision. The vector V+p can be expressed from (3)
as follows

V+p = V−p + ∆Vp = V−p + ∆Vc − ∆Ωp × rc. (11)
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In a two-phase gas-particle flow, the velocity vector of a particle just before its collision V−p can be determined from
the particle trajectory computation. Hence, we consider the components u−p , v−p , w−p in OXYZ-coordinates as the known
values. The components of the vector ∆Vc in these coordinates are given by the relations (7) in which u−c , v−c , w−c can
be found from the kinematic relation (2). Thus, the problem is to determine the components of vectors ∆Ωp and rc in
OXYZ-coordinates, whereas we know their components in the particle-fixed coordinates Opξηζ. The components of
any vector b in the coordinate systems OXYZ and Opξηζ are related bybξ

bη
bζ

 = A

bX
bY
bZ

 ,
bX
bY
bZ

 = AT

bξ
bη
bζ

 , (12)

where A is the rotation matrix the elements of which can be expressed through the angles φ, ψ, ϑ, and AT is the
transposed matrix (AT coincides with the inverse matrix A−1). However, it is much more convenient to describe the
particle rotation in terms of the Rodrigues-Hamilton parameters rather then in terms of the Eulerian angles, because in
this case the system of the kinematic equations has no singularities. Formally, it means that we go from φ, ψ, ϑ to new
variables λk (k = 0, 1, 2, 3), which are related with φ, ψ, ϑ by

λ0 = cos(φ/2) cos(ψ/2) cos(ϑ/2) − sin(φ/2) sin(ψ/2) sin(ϑ/2),

λ1 = sin(φ/2) cos(ψ/2) cos(ϑ/2) + cos(φ/2) sin(ψ/2) sin(ϑ/2),

λ2 = cos(φ/2) sin(ψ/2) cos(ϑ/2) + sin(φ/2) cos(ψ/2) sin(ϑ/2),

λ3 = cos(φ/2) cos(ψ/2) sin(ϑ/2) − sin(φ/2) sin(ψ/2) cos(ϑ/2).

(13)

The elements of matrix A are expressed in terms of λk as

a11 = λ
2
0 + λ

2
1 − λ2

2 − λ2
3, a12 = 2(λ0λ3 + λ1λ2), a13 = 2(λ1λ3 − λ0λ2),

a21 = 2(λ1λ2 − λ0λ3), a22 = λ
2
0 − λ2

1 + λ
2
2 − λ2

3, a23 = 2(λ0λ1 + λ2λ3),

a31 = 2(λ0λ2 + λ3λ1), a32 = 2(λ2λ3 − λ0λ1), a33 = λ
2
0 − λ2

1 − λ2
2 + λ

2
3.

(14)

If the angles φ, ψ, ϑ are given, we can calculate the values of λ0, λ1, λ2, λ3 from (13), and then the elements of the
matrix A from (14). With this result we obtain from (12)ωpX

ωpY
ωpZ

 = AT

ωpξ
ωpη
ωpζ

 ,
∆ωpX
∆ωpY
∆ωpZ

 = AT

∆ωpξ
∆ωpη
∆ωpζ

 ,
rcX
rcY
rcZ

 = AT

ξc
ηc
ζc

 . (15)

Substitution of ωpξ, ωpη, ωpζ from (10) into the first relation in (15) gives the components of Ω+p in the OXYZ-
coordinates. Substituting the values of ∆ωpX , ∆ωpY , ∆ωpZ and rcX , rcY , rcZ from (15) to (11) we obtain the final ex-
pressions for the components of the vector V+p in the system of coordinates OXYZ

u+p = u−p + ∆uc − ∆ωpYrcZ + ∆ωpZrcY ,

v+p = v−p + ∆vc − ∆ωpZrcX + ∆ωpXrcZ ,

w+p = w−p + ∆wc − ∆ωpXrcY + ∆ωpYrcX .

(16)

Thus, if we have the velocity of the particle center of gravity V−p , the particle angular velocityΩ−p , and the angles
φ, ψ, ϑ at the moment of a particle-wall collision, we can calculate the components of the velocity of the particle center
of gravity and the particle angular velocity just after a collision in XYZ-coordinates using the relations (2), (7), (9),
(10), (13), (14), (15), and (16). Note, that the position vector rc is defined uniquely by the particle shape and the particle
orientation at the moment of a collision.

3. Scattering of rebounded particles

Non-spherical particles impinging on a wall at a given angle on incidence α1 (see Fig. 3) and with the same translational
and rotational velocities, Vp1 andΩp1, rebound in different directions. Such a phenomenon is referred to as the particle
scattering. It is caused by the random orientation of particles in space before the first collision. A particle can experience
several collisions during one rebound. We use the particle-wall collision model described in the previous Section for
each collision.
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Figure 3: Schematic of a particle impact: angles α2 and β2 define the direction of a particle rebound.

Let (XY) be the plane of impact (the plane in which vector Vp1 and the normal to the wall surface lie). The
direction of the particle rebound can be defined by two angles α2 and β2 (Fig. 3). The angle α2 lies in the range from 0
to π, and the angle β2 from −π/2 to π/2.

Let N be a number of incident particles with the fixed Vp1, Ωp1 and α1, and dN(α2, β2, dα2, dβ2) be a num-
ber of those particles, which are reflected in the direction specified by the intervals of angles [α2, α2 + dα2] and
[β2, β2 + dβ2]. Introduce the distribution function I(α2, β2) of rebounded particles over the angles α2 and β2 by the
relationship I(α2, β2) dα2 dβ2 = dN(α2, β2, dα2, dβ2)/N. This expression represents the probability of particle rebound
in the direction defined by the angles (α2, β2) within the intervals dα2 and dβ2, respectively. The function I(α2, β2) will
be referred to as the three-dimensional (3D) scattering indicatrix. Integrating I(α2, β2) over β2 from −π/2 to π/2 we
obtain the two-dimensional (2D) scattering indicatrix which describes the distribution of rebounded particles over the
angle α2 (denote it by F(α2)).

The scattering indicatrices for particles rebounded from a smooth solid wall were calculated using the direct
statistical simulation technique. In the domain of angles 0 6 α2 6 π and −π/2 6 β2 6 π/2, we introduced the uniform
rectangular grid with the steps ∆α2 = ∆β2 = π/180 (= 1◦). The rebound of a great number of particles (≈ 5 · 107) was
simulated for initially non-rotating particles (Ωp1 = 0) at fixed (Vp1 and α1).

In calculations, the particle shape parameters were taken as follows: for prisms (the extended parallelepiped)
the aspect ratios were taken as b/a = c/a = 0.8, and for prisms with cut vertices the aspect ratios were taken as
b/a = 0.6, c/a = 0.8. The size a had no effect on the indicatrices. Initial space orientation of a particle in every trial
was considered as random and equiprobable. The collision model described above (with restitution coefficients aτc = 0
and anc calculated from relationship (6)) was used for every collision of a test particle during its rebound. For (i j)-cell
of the grid, the value Ni j was determined as a number of particles with rebound angles α2 and β2 lying in the intervals
(i − 1)∆α2 6 α2 < i∆α2, ( j − 1)∆β2 6 β2 < j∆β2. For large enough N, the ratio Ni j/N is close to the probability of
reflection of a particle in the direction defined by the above indicated intervals of the angles. Then an approximate
value of the function I in the cell (i j) is calculated as

I(α2, β2)i j ≈
Ni j

N ∆α2 ∆β2 cos[∆α2(i + 1/2)]
.

As the values of I(α2, β2)i j were calculated in all grid cells, the distribution function I(α2, β2) in the whole calculation
domain was constructed. Views of 3D scattering indicatrices for normal impact (α1 = 90◦) of particles of two different
shape is shown in Fig. 4.

Distribution of incident particles in a number of particle-wall collisions during a single rebound of every test
particle is illustrated by Table 1. The particle impact velocity and the angle of incidence are the same as in Fig. 4. It is
clearly seen, that the great majority of test particles experienced more than one collision.

Two-dimensional (2D) scattering indicatrices F(α2) in the plane XY) was constructed from the calculated values

F(α2)i ≈

∑
j

Ni j

N ∆α2
,

where the summation was over all cells (i j) with the fixed index i. These indicatrices are shown in Fig. 5. The dominant
direction of rebound of both considered particle shape differs substantially from that of spherical particles (shown by
dotted red lines).
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Figure 4: 3D scattering indicatrices of rebounded particles: prismatic particles (left) and prismatic particles with cut
vertices (right). Vp1 = 500 m/s, the incident angle α1 = 90◦.

Table 1: Distribution of incident particles in a number of particle-wall collisions during rebound

Number of collisions of an incident
particle with the wall during its
rebound, K

1 2 3 4 5 and
more

Mean part of
particles experienced
K collisions during a

Prismatic
particles 2.9 54.1 37.7 5.2 0.1

rebound (in percent
of a total number of
incident particles)

Prismatic
particles with
cut vertices

5.4 39.2 28.2 17.5 9.7

Figure 5: 2D scattering indicatrices of rebounded prismatic particles (left column) and prismatic particles with cut
vertices (right column) in the plane of impact (XY). Direction of incident particles’ motion is shown by solid black
line; direction of spherical particles’ rebound is shown by red dotted lines.
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4. Model of particle-phase motion with particle-particle collisions in gas-particle flow

Particles are more inertial than the carrier gas, and they do not follow the streamlines. Motion of particles in the flow
over a body is governed by the gas-particle interaction, inter-particle collisions and impactive interaction of particles
with the body surface. Solid particles colliding the body surface rebound from it and then they can collide with the
incident ones. These collisions, being random in nature, result in chaotic motion of particles. In this Section we
describe briefly a kinetic model for the collisional "gas" of dispersed particles proposed in [20].

Particles are assumed to be spheres of the same radius rp. They interact with each other only through binary
collisions that is valid if the "gas" of particles is not too dense. Besides, it is assumed that collision process is in-
stantaneous and the position of colliding particles does not change during a collision. The state of the i-th particle is
determined by a point xi of the phase space which includes the particle position vector ri, the particle translational and
rotational velocities (vpi and Ωpi, respectively), i.e. xi = (ri, vpi,Ωpi). The vector xi is split into ri and yi = (vpi,Ωpi).
We denote the parameters of the i-th and j-th particles before and after their collision by the superscripts "−" and "+",
respectively. The post-collisional parameters of colliding particles are fully determined by the pre-collisional ones and
the relative position of particles at the collision instant, thus we can write y+k = y+k (y−i , y

−
j ,ni j), k = i, j, where ni j is

the unit vector directed from the centre of i-th particle towards the centre of j-th particle at the instant of collision.
The above relation for y+k is presumed to give a one-to-one correspondence between y−k and y+k , so that the Jacobian
J1 = |D(y+i , y

+
j )/D(y−i , y

−
j )| , 0 and, hence, the relation can be resolved for the particle parameters before a collision

y−k = y−k (y+i , y
+
j ,ni j), k = i, j. A collision is physically feasible only when g−i j · ni j ≤ 0, where gi j = v j − vi. We

assume also that states of any two particles in the phase space are not statistically correlated. This assumption is valid
if the mean free path of particles moving in the carrier gas is much smaller than the particle momentum response
length. These assumptions and reasoning are similar to those accepted in rarefied gas dynamics for collisions between
molecules.

Let f1 = f (x1, t) be the distribution function such that f1 dx1 = f (r1, vp1,Ωp1, t) dr1 dvp1 dΩp1 is the number
of particles with coordinates and velocities from the elementary volume dr1 dvp1 dΩp1 in the vicinity of the point
x1 = (r1, vp1,Ωp1) of the phase space. Then, the following kinetic Boltzmann-type equation for f1 can be derived

∂ f1
∂t
+

∂

∂r1
(vp1 f1) +

∂

∂vp1

(
fp1

mp
f1

)
+

∂

∂Ωp1

(
lp1

Ip
f1

)
= Icoll . (17)

This equation is a particular case of the more general kinetic equation [20] which also takes gas-particle heat transfer
and particle size distribution into account. The collisional integral in the right-hand side is given by

Icoll = 4r2
p

∫
dy2

∫
g12·n12≤0

(
f −1 f −2

J
− f1 f2

)
|g12 · n12| sin χ12dχ12dε12, J =

∣∣∣∣∣∣g12 · n12

g−12 · n12
J1

∣∣∣∣∣∣ . (18)

Here mp and Ip are the particle mass and moment of inertia, fp1 and lp1 are the force and the torque acting on a
particle from the carrier gas which are calculated for the particle with the parameters (vp1,Ωp1) at the point r1 of flow,
f2 = f (r1, y2, t), f −1 = f (r1, y−1 , t), f −2 = f (r1, y−2 , t), g12 = vp2 − vp1 and n12 has been defined above. The inequality
g12 ·n12 ≤ 0 is the condition of physical feasibility of a collision between the 1-st and the 2-nd particles, and the angles
χ12 and ε12 specify the direction of n12 in spherical coordinates with the origin at the centre of the 1-st particle [20].

The function J which enters into the collisional integral depends on the particle-particle collision model which
will be discussed later.

Let Φ = Φ(xi) be a parameter of an individual particle. If a hydrodynamic parameter of a "gas" of particles
(in other words, macroparameter of the dispersed phase) ⟨Φ⟩(r, t) at a point r of the physical space is defined as the
ensemble averaged value of Φ = Φ(xi) in a unit volume of the gas–particle mixture, then ⟨Φ⟩(r, t) can be expressed in
terms of Φ and f (x1, t) as follows:

⟨Φ⟩(r, t) =
∫
Φ(r, y1, t) f (r, y1, t) dy1. (19)

For example, the particle numerical density np, the particle volume fraction αp, the hydrodynamic velocity wp and the
specific energy of the particle chaotic motion ep are calculated as follows:

np = ⟨1⟩, αp =
4
3
πr3

pnp, wp =
⟨vp⟩
np

, ep =
1

mpnp

⟨
mp(vp − wp)2

2

⟩
.

A model of an non-completely elastic collision between two particles is an important part of the kinetic model.
The momentum and angular momentum balance equations for a pair of i-th and j-th colliding spherical particles can
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be written in the form:

mpv−pi + mpv−p j = mpv+pi + mpv+p j, Ip(Ω+pk −Ω−pk) = mprpek × (v+pk − v−pk), k = i, j, (20)

where ei = ni j, e j = −ni j. The system of these three equations is not closed because it involves four unknowns v+pk
and Ω+pk, k = i, j. Some additional hypotheses for the interaction between particles should be introduced to make this
system closed. Considering the relative velocity of particles at the contact point

Ui j = vp j − vpi − rp(Ωpi +Ωp j) × ni j (21)

we represent U+i j in the form

U+i j = −apnU−i j(n) + aptU−i j(t), (22)

where apn and apt are the restitution coefficients of the normal (Ui j(n) = (Ui j ·ni j)ni j) and tangential (Ui j(t) = Ui j−Ui j(n))
components of the relative velocity Ui j. These coefficients are assumed to take into account the losses of the particles’
kinetic energy due to inelastic collisions (apn) and due to the particles’ surface friction (apt). Their values lie in the
ranges: 0 ≤ apn ≤ 1, −1 ≤ apt ≤ 1.

The true values of apn and apt in different conditions of a collision are unknown. We assume these restitution
coefficients to be constant. If the values of apn and apt are given, then the system of equations becomes closed and
can be solved for the parameters of i-th and j-th particles after their collision. In this case we can also calculate the
Jacobian J1 = |D(y+i , y

+
j )/D(y−i , y

−
j )| = −apna2

pt and then the parameter J in the collisional integral: J = a2
pna2

pt. In
reality, the absolute values of apn and apt are always less than a unity, hence J < 1. The multiplier 1/J in the collisional
integral takes into account the "compression" of the phase space caused by the losses of the kinetic energy of colliding
particles.

In the present study the force fp acting on a particle includes the drag force fD and the lift Magnus force fM
(fp = fD + fM) which dominate over all other force components in the flow under consideration. These forces and the
torque lp can be expressed in terms of the dimensionless coefficients CD, Cω, and Cl:

fD =
1
2

CDπr2
pρ|v − vp|(v − vp), fM =

4
3

Cωπr3
pρ[(Ω −Ωp) × (v − vp)], lp =

1
2

Clr5
pρ|Ω −Ωp|(Ω −Ωp), (23)

whereΩ = (1/2)curl v. The coefficients were calculated from the formulae approximating the analytical, experimental
and numerical data in wide ranges of the governing parameters of the flow around a single particle.

The drag coefficient CD was calculated from the approximation formula proposed in [21]:

CD(Rep, Mp, Tp/T ) =


C1

D, 0 < Mp ≤ 1,

C1
D1 +

4
3

(Mp − 1)(C2
D2 −C1

D1), 1 < Mp ≤ 1.75,

C2
D, Mp > 1.75,

where

C1
D(Rep,Mp,Tp/T ) = 24

Rep +

√
γ

2
Mp

4.33 +
3.65 − 1.53Tp/T
1 + 0.353Tp/T

exp

−0.247

√
2
γ

Rep

Mp




−1

+

4.5 + 0.38(0.03Rep + 0.48
√

Rep)

1 + 0.03Rep + 0.48
√

Rep
+ 0.1M2

p + 0.2M8
p

 exp

− Mp

2
√

Rep

 + 0.6
√
γ

2
Mp

[
1 − exp

(
−

Mp

Rep

)]
,

C2
D(Rep,Mp,Tp/T ) =

0.9 + 0.34
M2

p
+ 1.86

√
Mp

Rep

2 + 8
γM2

p
+

2.116
γMp

√
Tp

T
− 4
γ2M4

p


 ·

1 + 1.86

√
Mp

Rep


−1

.

Here Rep = 2ρ|v − vp|rp/µ and Mp = |v − vp|/
√
γℜT are the relative particle Reynolds and Mach numbers, C1

D1 is the
value of C1

D at Mp = 1, and C2
D2 is the value of C2

D at Mp = 1.75. The dependence of CD on Tp/T is very week in
the flow under consideration. That is why we have ignored this dependence, and the ratio Tp/T = 1 has been taken as
unity.

For calculation of Cω, the exact solution from [22] and the formula proposed in [23] were used

Cω =


3/4, 2γω < 0.45,

3/8 Ĉω, 2γω ≥ 0.45,
(24)
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where γω = |Ω −Ωp|rp/|v − vp|, Ĉω(γω,Rep) = γ−1
ω [0.45 + (2γω − 0.45) exp(−0.075γ0.4

ω Re0.7
p )].

The expression for the coefficient Cl was taken in the form proposed in [24]

Cl =
Cl1√
Repω

+
Cl2

Repω
, (25)

where Repω = ρ|Ω −Ωp|r2
p/µ, and constants Cl1 and Cl2 are given in the Table 2.

Table 2: Coefficients Cl1 and Cl2 in different ranges of the particle rotational Reynolds number Repω

Repω Cl1 Cl2

0 − 6 0 16π
6 − 20 5.32 37.2

20 − 50 6.44 32.2
50 − 4 · 104 6.45 32.1

5. Model of the carrier gas flow

In the present study we consider gas-particle flow over a cylinder. The particle volume fraction is assumed to be low
enough so that the reversed effect of the particle phase on the carrier gas is negligible. This allows us to consider
gas flow as two-dimensional (2D). We also consider not too high Reynolds number of flow over a cylinder so that the
flow near a cylinder is laminar and can be described by the Navier–Stokes equations, which for the time-depended
compressible 2D flow can be written in Cartesian coordinates (x, y) in the following compact form [25]:

∂Q
∂t
+
∂Fx

∂x
+
∂Fy

∂y
=
∂Gx

∂x
+
∂Gy

∂y
, (26)

where the vectors Q, Fx, Fy, Gx and Gy are defined as follows

Q =


ρ
ρu
ρv
ρe

 , Fx =


ρu

ρu2 + p
ρuv

(ρe + p)u

 , Fy =


ρv
ρuv

ρv2 + p
(ρe + p)v

 , Gx =


0
τxx

τxy

uτxx + vτxy − qx

 , Gy =


0
τxy

τyy

uτxy + vτyy − qy

 . (27)

Here,

τxx =
2
3
µ

(
2
∂u
∂x
− ∂v
∂y

)
, τyy =

2
3
µ

(
2
∂v
∂y
− ∂u
∂x

)
, τxy = µ

(
∂u
∂y
+
∂v
∂x

)
, (28)

qx = −λ
∂T
∂x
, qy = −λ

∂T
∂y
, p = ρRT, e = cvT +

u2 + v2

2
. (29)

In these equations, t is the time; (xy) is the plane of flow, u and v are the x- and y-components of the velocity vector;
ρ, p, e, T , µ and λ are the gas density, pressure, specific total energy, temperature, viscosity, and thermal conductivity,
respectively; R is the gas constant; and cV is the specific heat at constant volume. For µ and λ the following relations
were used µ = µs(T/Ts)3/2(Ts +Cs)/(T +Cs) and λ = cpµ/Pr, where the first relation is the Sutherlend formula (for the
air µs = 1.71 · 10−5 N·s/m2, Ts = 288 K, Cs = 117 K); Pr is the Prandtl number; and cp is the specific heat at constant
pressure. The above system of equations is closed.

6. Gas-particle flow over a cylinder: results and discussion

At first, the equations (26)–(29) were solved numerically by CFD method with high accuracy. Steady-state flow was
obtained as a limit of unsteady solution at large time (see Fig. 6). Total number of grid cells in the shock layer was
about 250 thousands. A number of cells along the cylinder contour from the stagnation point to the maximal cross-
section was one thousand, and across the boundary layer about 15. Input data for computational simulation were taken
as follows: the cylinder diameter D = 20 mm, the free stream velocity V∞ = 600 m/s, the pressure p∞ = 853 Pa,
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the temperature T∞ = 88.7 K. These values correspond to the Mach number M∞ = 3.18 and the Reynolds number
Re = ρ∞V∞D/µ∞ = 0.7 · 105. The Prandtl number was equal to Pr = 0.71. At the cylinder surface the normal and
tangential velocity components were zero, the temperature was Tw = 300 K.

Interaction of a particle cloud with the cylinder in a supersonic two-phase gas-particle flow was studied numer-
ically to investigate the role of rebounded particle scattering, particle-particle collisions and particle size distribution
in formation of the particle phase flow structure. The initial position of a cloud (L = 100 mm, B = 20 mm), config-
uration of the bow shock wave, and field of the Mach number in the shock layer are shown in Fig. 6. Particles in an
undisturbed flow were assumed to have the velocity and the temperature equal to those of the carrier gas. The carrier
gas flow was considered as two-dimensional, but the motion of every particle was simulated as three-dimensional. The
particle material density was equal to ρ◦p = 2650 kg/m3. The size of spherical particles was equal to their diameter dp.
For non-spherical particles, the size was considered as the diameter of spherical particles of the same volume (mass).
In calculations the particle size was varied from 1 µm to 10 µm. These particle parameters together with the parameters
taken for the gas flow correspond to the Stokes number Stk = ρ◦pd2

pV∞/(18µ∞D) from 0.77 (particles of medium inertia)
to 77 (coarse particles of high inertia).

Figure 6: Particle cloud configuration in an undisturbed flow and field of Mach number in the shock layer.

The actual shape of non-spherical particles was taken into account only in simulation of particle rebounding
from the cylinder surface. In all other "elementary" processes (particle-particle collisions and particle gas interaction)
non-spherical particles were considered as spherical ones of the same volume.

Computational simulation of "collisional gas" of particles in the carrier gas flow was performed by the direct
simulation Monte Carlo (DSMC) method described in detail in [26]. In calculations, the restitution coefficients entering
the relation (22) were taken for colliding particles as follows: apn = 0.5 and apt = 0.9.

Instant patterns of distribution of spherical and prismatic particles near the forward part of a cylinder are shown
in Fig. 7. As is seen, a particle shape influences the particle phase flow pattern very strongly. Prismatic particles fly
off from the cylinder surface after rebound much farther than spherical ones of the same size. Coarse particles (10 µm)
fly off even beyond the shock layer. At first glance such difference in behaviour of spherical and prismatic particles is
unexpected, and an additional investigation was carried out to understand this phenomenon. For every non-spherical
particle of fixed shape and every test angle of incidence, 50 million rebounds were calculated for different random
particles’ space orientation before an impact. The velocity impact of 500 m/s was close to those obtained in simulation
of particle cloud interaction with a cylinder. The same collision model was used in all cases. The dimensionless
particles’ velocities and their normal and tangential components averaged over all tests versus the angle of incidence
are presented in Fig. 8. The average velocity Vp2 for all particles’ shape turned out to be close to each other in the
range 0 6 α1 . 70◦, however the difference increases with further increasing α1 up to 90◦. For spherical particles
Vp2 becomes very small at α1 = 90◦, whereas for prismatic particles and prismatic particles with cut vertices Vp2
remains close to that at α1 ≈ 70◦. A close examination of this result showed that a substantial normal and tangential
velocities Vn2 and Vτ2 appears for non-spherical particles even at normal impact (α1 = 90◦) due to multiple collisions
(see Table 1) and twisting during rebound. Spherical particles experience only one collision at all values of α1, and
they are not twisted at α1 = 90◦.

The next part of the study deals with the effect of particle-particle collision. Figure 9 demonstrates this effect
for different particle size, particle shape, and particle volume fraction αp∞ in an initial cloud. We note that patterns
of prismatic particles for αp∞ = 10−4 are very close to those in Fig 7. This means that the effect of collisions at this
particle concentration is negligible. An increase of αp∞ up to 10−3 results in considerable change of the patterns for the
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Figure 7: Instantaneous patterns of monosized particles near the forward part of a cylinder: particle-particle collisions
are not taken into account.

Figure 8: Mean restitution coefficients Vp2/Vp1, Vn2/Vp1 and Vτ2/Vp1 as functions of the angle of incidence α1 for
different particle shape.

considered particle shapes and particle size. We note that for larger particle concentration (αp∞ = 10−3) preliminary
calculations were performed also for a two-way coupled gas-particle flow model. They shown a very weak effect in
this case.

As is known, real particles never have the same size. The lognormal law for the particle distribution in size was
taken in a initial particle cloud to study the effect of the particle size scatter on the particle phase flow pattern. This law
has the form:

g∞(dp) =
1

√
2π dp logσ

exp

−  log dp − log dg
√

2 logσ

2 (30)

where parameter dg is related with the most probable particle size dpm by the formula dg = dpm exp(log2 σ). Calcula-
tions were performed for σ = 1.2 and 1.728. Plots of g∞ are shown in Fig. 10.

In Fig. 11 are given the particle phase flow patterns for σ = 1.728. It is seen that the effect of the particle size
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Figure 9: Effect of the particle-particle collisions on the particle phase flow pattern for different particle size, particle
shape, and particle volume fraction αp∞ in an undisturbed gas-particle flow.

scatter is noticeable. It should be noted that this effect for σ = 1.2 is practically invisible.

Figure 10: Lognormal law of particle size distribution in an initial cloud.

Besides investigation of the role of effect of random nature on particle phase flow patterns, the particle kinetic
energy loss ∆E along the cylinder contour was calculated. Some results are displayed in Fig. 12 (E is the full particle
kinetic energy flux in the undisturbed flow). This loss is caused by inelastic particle-wall collisions, and it depends
on material properties of particles and a streamlined body (cylinder), particles’ shape and size, flow velocity, particle-
particle collisions, and some others. Based on the models taken in the present study, we can conclude that prismatic
particles results in less decrease of energy loss than spherical particles almost on the whole forward part of a cylinder
(in the range 0 6 θ . 70◦). Particle-particle collisions additionally decrease energy loss that can be interpreted as the
shielding effect.
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Figure 11: The effect of particle size distribution on the particle phase flow pattern.

The particle energy loss is distributed between rebounded particles, cylinder, and the carrier gas, however this
distribution is unknown and requires further experimental and theoretical investigations. This question is of great
importance for prediction of the body erosion rate in a gas-particle flow.

Figure 12: Effect of the particle shape and the particle-particle (p-p) collisions on the particle kinetic energy loss during
particle phase interaction with the forward part of a cylinder. αp∞ = 10−3.

7. Conclusion

Computational simulation of supersonic two-phase gas-particle flow over a blunt body (cylinder) was performed with
taking account for the following effects of random nature: scattering of particles rebounded from the body surface
due to non-spherical particle shape, collisions between particles, and particle size distribution. Two non-spherical
particle shapes were considered: rectangular parallelepiped (prismatic particles) and rectangular parallelepiped with
cut vertices, and the results were compared with those for spherical particles. Calculations were performed for medium
to highly inertial particles (Stokes number was varied from a value of order of a unity to several tens). The most
important conclusions are sum up below.

Rebounding of non-spherical particles is accompanied very often by two and more collisions. For example,
97 % prismatic particles in the case on normal impact experience more than one collision (Table 1). Such particles
are strongly twisted, and the magnitude of their normal velocity after a rebound is much higher than that for spherical
particles (Fig. 8). Non-spherical particles fly away from the forward part of a blunt body much farther than spherical
ones of the same mass.

All considered random phenomena (scattering of rebounded particles, particle-particle collisions and particle
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size distribution) have an effect on the particle phase flow pattern. The effect of scattering is of primary importance
for any particle concentration. Collisions between particles begin to play a noticeable role for rather high particle
concentration, when the particle mass load in the flow is close or greater than that for the carrier gas. Particle size
distribution has a pronounced effect only if the size dispersion is high enough (e.g., at σ & 1.7 in the lognormal law
(30), Fig. 10).

The particle shape has a essential effect on the particle kinetic energy loss during rebounding. In the vicinity of
the stagnation point, the loss of prismatic particles energy can be less by a factor ≈ 0.7 than that for spherical particles
(Fig. 12). Collisions between particles result in formation of a dense layer of chaotically moving particles near the
body surface. This layer inhibits the body surface from high-speed particles producing a shielding effect.

The present study has shown that all considered effects can play an important role in gas-particle flows over
bodies, and they should be taken into account.
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