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Abstract
This paper investigates methods for optimizing an impulsive multi-rendezvous trajectory aimed at per-
forming a complete tour of a prescribed set of targets. A simple heuristic is adopted for estimating the
cost of each transfer leg. A genetic algorithm is used for optimizing both target sequence and rendezvous
epochs. This approach is tested firstly by assuming that all transfers have the same duration. Then, the time
domain is discretized over a finer grid, allowing a more appropriate sizing of the time-window allocated
for each leg. Numerical results for a set comprising up to 15 targets are presented.

1. Introduction

A multi-rendezvous (MRR) trajectory concerns the motion of an active spacecraft (chaser) which executes a sequence
of maneuvers with the aim of performing a complete tour of a prescribed set of targets (e.g., space debris or asteroids).
MRR trajectories are gradually increasing in popularity within the aerospace community, as missions based on a chaser
spacecraft “hopping” among multiple bodies are becoming of practical interest. Typical operational scenarios involve
on-orbit servicing/refueling of geostationary satellites, and Active Debris Removal (ADR) missions. ADR missions
are particularly significant as they would allow to restore the functionality of the Low Earth Orbit (LEO) environment,
close to being compromised by the huge amount of orbiting wreckage.1 Each ADR mission may involve the removal
of several dozens of fragments, in order to reduce the cumulative cost of the operation. As a result, the best use of the
chaser propellant becomes mandatory, and consequently, a well-designed trajectory must be searched for.

A number of authors dealt with long term or time-free ADR missions aimed at removing a small number of
debris from Sun synchronous orbits (at a rate of three to ten per year). These missions heavily rely on J2 orbital
perturbation for the alignment of the orbital planes of consecutive targets before starting the rendezvous maneuver, in
order to reduce the mission cost.2 However, such an operational scenario becomes impractical in presence of strict
time-constraints or long debris sequences. In this respect, the present paper investigates the design of an ADR mission
involving a tighter time-constraint and possibly longer target chains, assuming an impulsive thrust model for the chaser.
The aim is to minimize the overall mission ∆V , while performing a complete tour of a prescribed set of targets that
move on the same orbital plane at slightly different altitudes.

The single-target time-fixed rendezvous is a well-known problem in spaceflight mechanics. Several optimization
methods have been proposed assuming either finite3, 4 or impulsive thrust.5, 6 In the latter case, four burns permit the
achievement of the optimal solution, if close coplanar orbits are considered.7 Extension to a series of consecutive
rendezvous is straightforward if the sequence of targets is assigned a priori.8 However, the combinatorial aspect
introduced by allowing permutations of the target sequence changes radically the problem nature and further increases
its complexity. In this respect, the MRR problem presents several analogies with the Traveling Salesman Problem,9 a
well-known problem in Operational Research, where the goal is finding the shortest tour which allows a salesman to
visit a prescribed set of cities.

While similar, the problem here investigated is more complex than a standard TSP, as the cost associated with
traveling between any two targets changes with time, due to the orbital motion. With this analogy in mind, several
attempts have been made to find the optimal solution of the MRR problem by using algorithms developed in the
context of Operational Research. Exhaustive, brute-force, approaches10, 11 and branch and bound search12 have been
attempted first, for the design of optimal ADR missions in LEO. However, the effectiveness of those methods is limited
to small sets of targets, due to the course of dimensionality.13 Meta-heuristic approaches have thus rapidly gained in
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popularity, as they allow to find a sub-optimal solution in a reasonable, limited amount of time. Beam Search14 and
Ant Colony Optimization2 have been widely exploited for both ADR and asteroid exploration mission planning. An
hybridization of the two has also been discussed.15 These methods attempt at chaining one target after the other, into
a sequence, evaluating many (if not all) possible branches departing from a given starting node. In order to reduce the
overall computational effort, simplistic transfer models are used for a fast evaluation of any target-to-target transfer cost;
moreover, pre-determined encounter epochs are commonly employed.16 Despite being rather flexible, this formulation
usually underperforms in case a complete tour is searched for. Other methods, instead, rely on an iterative refinement
of a set of (possibly random) initial solutions and guarantee the tour completeness at any point in the optimization
process. Prominent examples are Tabu Search (TS),17 Simulated Annealing (SA),18 and Genetic Algorithm (GA).19–21

Among the aforementioned optimization methods, Genetic Algorithm is the most flexible one, as, in principle,
it may handle any type of decision variable. GA performs a global optimization and, thanks to its stochastic selection
and mutation operators, it has greater chances to evade from local optima than greedy methods. In addition, it may
adopt an encoding that guarantees the intrinsic completeness of the tour. GA is a population-based method, hence
its execution time can be significantly reduced by an efficient parallel implementation, that is not possible for single-
solution methods like TS and SA. All these features make it a solid candidate for solving the complete tour problem
here studied and motivate its choice.

The paper is organized as follows. Section 2 presents a comprehensive mathematical formulation of the impul-
sive multi-rendezvous problem, resulting in a Mixed-Integer Nonlinear Programming (MINLP) problem. Section 3
proposes a bi-level optimization approach aimed at solving it. A simple heuristic is proposed in Section 3.1, based on
a sub-optimal four-impulse analytic solution of the single-target rendezvous problem, for estimating the cost of each
leg connecting two assigned consecutive targets once initial time and maximum transfer duration are prescribed. The
effectiveness of this sub-optimal solution is verified in a few relevant cases by comparing it with the optimal solution.
On the basis of this heuristic, a combinatorial optimization problem, or touring problem, is defined, which shares some
features with the TSP. Section 3.2 presents three formulations of the combinatorial problem with increasing complexity
(which, in turn, provide increasing possibility of delivering the optimal solution of the original problem). Section 4
describes the Generic Algorithm here adopted for the simultaneous optimization of the target sequence and rough esti-
mation of the rendezvous epochs. Once the best sequence and the approximate encounter times has been determined,
the whole transfer is optimized through a multi-population self-adaptive Differential Evolution algorithm. Numerical
results for a set comprising up to 15 targets are presented in Section 5. A conclusion section ends the paper.

2. Problem Statement

Let us consider a set of N prescribed targets that move on circular coplanar orbits at slightly different altitudes under
a keplerian dynamical model. For each target body Ai, orbital radius rAi and right ascension at starting time θAi (t0)
are assigned. The velocity is constant and equals to vAi =

√
µ/rAi , while the angular position at any time is given by

θAi (t) = θAi (t0) +
√
µ/r3

Ai
(t − t0), where µ is the gravitational parameter of the central body. The chaser is also assumed

to be initially on a circular orbit of radius r0 at the right ascension θ0(t0) = 0, on the same orbital plane as all the targets.
The problem is thus planar. The goal is to design an impulsive multi-rendezvous transfer trajectory that allows the
chaser to perform a complete tour of a prescribed set of targets within a specified maximum time-length of the entire
mission TM , minimizing the overall mission ∆V .

Let us assume that a sequence S A = {A1, A2, . . . , AN} of N non-repeating bodies to encounter and the corre-
sponding set of (monotonically increasing) encounter times t = {t1, t2, . . . , tN}, with tN = TM , have been assigned, so
that the integer A j ∈ [1,N] identifies the target met at time t j. The overall trajectory of the chaser can be decomposed
into a series of target-to-target body legs. The k-th leg departs from body Ak (with A0 = 0) at time tk and arrives at the
body Ak+1 at time tk+1, for k = 0, . . . ,N − 1.

The rendezvous condition requires that, at the ending point of the leg, position and velocity of the chaser are the
same as the target:

r(tk) = rAk (tk) = rk ∀ k ∈ {0, 1, . . . ,N} (1)
v(tk) = vAk (tk) = vk ∀ k ∈ {0, 1, . . . ,N} (2)

Being four the maximum number of impulses for an optimal time-constraint planar rendezvous,7 each body-
to-body transfer leg is made up of a sequence of three ballistic arcs, named “a”, “b”, and “c”, joined by impulsive
maneuvers located at the departure, at the two internal points labeled with subscripts “k + 1/3” and “k + 2/3”, and at
the arrival point, respectively.

A position formulation is here considered, that is, the trajectory is parameterized with respect to radii rk+1/3,
rk+2/3 and anomalies θk+1/3, θk+2/3 at the internal maneuvering points. Spacecraft velocities immediately before v−k+1/3,
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Figure 1: Trajectory sketch for the k-th leg.

v−k+2/3 or after v+
k+1/3, v+

k+2/3 the maneuvers are found by solving either a geometrical problem or a Lambert problem.

2.1 Geometrical Problem

Let us first consider an arc “a” connecting the points “k” and “k + 1/3”. Two families of ellipses that connects rk and
rk+1/3 exist. They might be parameterized as a function of the semi-major axis and labeled as fast and slow families.22
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(a) Transfer ellipse flight time and semi-major axis as a function of
the y parameter.

v−k+1/3

rk+1/3

rk

∆θk+1/3

v+
k

c

F

F∗

c2

c1

γc

γ f

γ

F̃∗

(b) Geometrical construction of the transfer ellipse.

Figure 2: Geometrical Problem. Filled marker refers to the slow solution, corresponding to the solid-line transfer arc;
empty marker refers to the fast, dashed-line solution.

Let us introduce a non-dimensional parameter y ∈ [0, 1] so that:

a =
amin

4y (1 − y)
(3)
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where amin = (rk + rk+1/3 + c)/4 is the smallest semi-major axis which connects the ending points, and c =
∥∥∥rk − rk+1/3

∥∥∥
is the chord distance between the arc endpoints. Pairing the fast solutions with values y < 1/2, and the slow solutions
with values y > 1/2, the elliptic arc connecting the two assigned endpoints is uniquely identified for any given choice
of y. Figure 2(b) depicts the geometric construction that allows an unambiguous definition of the transfer ellipse, that
is, semi-major axis a, eccentricity e and argument of pericenter ω, as soon as y and ∆θ are known. Chord lengths
c1 = 2a − rk, and c2 = 2a − rk+1/3 are evaluated first. Angle γ follows from:

γ = acos

 r2
k − r2

k+1/3 + c2

2rk c

 (4)

hence γ f = γ − γc, where:

γc =


acos

c2
1 − c2

2 + c2

2c1c

 if y ≤ 0.5

− acos
c2

1 − c2
2 + c2

2c1c

 if y > 0.5
(5)

Eventually, the eccentricity is found as

e =

√
c2

1 + r2
k − 2c1 rk cos γ f

2a
(6)

Velocities at both endpoints (v+
k and v−k+1/3) follow from standard equations of the two-body problem. Transfer time

∆ta can also be evaluated and, consequently, the epoch at the intermediate maneuver tk+1/3 = tk + ∆ta is obtained. The
same procedure holds for the arc connecting points “k + 2/3” and “k + 1”, resulting in a similar geometrical definition
of the third arc “c”. As a result, one has [

v+
k , v−k+1/3

]
← yArc

(
rk, rk+1/3, yk,a

)
(7)[

v+
k+2/3, v−k+1

]
← yArc

(
rk+2/3, rk+1, yk,c

)
(8)

The cost of the maneuvers at the departure and arrival points are thus evaluated as:

∆Vka =
∥∥∥v+

k − vk

∥∥∥ (9)

∆Vkc =
∥∥∥v−k+1 − vk+1

∥∥∥ (10)

2.2 Multi-revolution Lambert problem

The central arc “b”, which connects points “k + 1/3” and “k + 2/3”, cannot be dealt with in the same fashion. In fact,
for a given choice of the parameters yk,a and yk,c the maneuvering epochs tk+1/3 and tk+2/3, and, consequently, the travel
time, are assigned. A multi-revolution Lambert problem can be formulated, being the position vectors rk+1/3, rk+2/3
and the travel time ∆t = tk+2/3 − tk+1/3 known. This problem admits 1 + 2nmax solutions, where nmax is the maximum
allowed number of revolutions; one solution for the 0-revolution transfer arc and two additional solutions, namely left
and right branch, for each n-revolution transfer orbit. Let us introduce an integer parameter L ∈ [−nmax, nmax] indicating
the solution corresponding to the |L|-revolution transfer orbit and side sign(L), positive for the right branch, negative
for the left one. For the L-th solution, the velocity vectors immediately after the second impulse v+

k+1/3 and just before
the third one v−k+2/3 can be evaluated as according to the algorithm by Izzo,23 that is:[

v+
k+1/3, v

−
k+2/3

]
← Lambert

(
rk+1/3, rk+2/3, tk+2/3 − tk+1/3; L

)
(11)

Hence, the total cost of the two internal maneuvers is:

∆Vkb =
∥∥∥v+

k+1/3 − v−k+1/3

∥∥∥ +
∥∥∥v+

k+2/3 − v−k+2/3

∥∥∥ (12)

Instead of treating L as an optimization variable, an enumeration approach could be used, that is, all the 2nmax +1
possible solutions are computed and the one with the lowest total ∆V is chosen. However, as we are considering
transfers between close orbits, we can make an educated guess and safely restrict the analysis to just three scenarios,
that is the chaser performs the same number of revolution as the target, one more, or one less, corresponding to six
solutions (three right and three left branches).
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2.3 MINLP formulation

According to the proposed formulation, the overall trajectory can be parameterized by using a set of 8 N parameters,
that is:

x =

N⋃
k=1

xk (13)

where:
xk = {Ak, tk} ∪

{
rk+1/3, ∆θk+1/3, yk,a

}
∪

{
rk+2/3, ∆θk+2/3, yk,c

}
(14)

with S A = {A1, A2, . . . , AN} a permutation of N, not-repeated, targets. Eventually, the impulsive time-constrained MRR
optimization problem can be formulated as:

P =

minx ∆Vtot(x)

s.t. xL ≤ x ≤ xU

(15)

where the overall cost of the MRR trajectory is:

∆Vtot =

N−1∑
k=0

(
∆Vka + ∆Vkb + ∆Vkc

)
(16)

and xL, xU are the lower and upper bounds of the design variables, respectively. This problem involves the simultaneous
optimization of both integer variables (defining the encounter sequence) and real-value decision variables (such as,
radius and anomaly at the maneuvers) and it is thus labeled as a Mixed-Integer Nonlinear Programming (MINLP)
problem.

3. Bi-Level Optimization Approach

The MINLP problem in Eq. (15) belongs to the class of NP-hard problems, hence no deterministic algorithm exists for
finding the optimal solution in polynomial-time. A variety of stochastic meta-heuristic techniques have been developed
over the last decades aiming at attaining a (often sub-optimal) good-quality solution in a reasonable, limited amount of
time. However, as the problem dimension increases, the required computational time may become prohibitive.

Instead of solving the problem as a whole, one might attempt to decompose the problem into simpler sub-
problems, that could be (more or less easily) solved separately, and eventually their solutions can be recomposed into
the original problem solution. For the problem at hand, a bi-level approach can be pursued, by isolating i) an outer level
that concerns the definition of the encounter sequence and a (possibly rough) evaluation of the epochs at each encounter,
while details of each body-to-body transfer leg are neglected; ii) an inner level which deals with the optimization of
each body-to-body transfer with full details, assuming that departure and arrival bodies are assigned; encounter epochs
may or may not be fixed.

The two layers are interconnected: the outer layer requires a measure of the cost associated to each transfer leg
for “weighting” the quality of a certain encounter sequence, even though the actual ∆V of each leg can be evaluated
only by solving the full-transfer optimization problem, that is, the inner-layer problem. On the other hand, the inner
layer requires the definition of the encounter sequence and rendezvous epochs, which, in turn, is the output of the
combinatorial, outer-layer problem. In practice, the two problems might be solved sequentially provided that a way,
that is, an heuristic, exists for attaining a reasonable estimate of the transfer cost without solving the full optimization
problem. Once the heuristic has been established, the outer-level combinatorial problem is isolated and solved first; its
solution is then used as initial guess for the inner-level problem.

3.1 Cost Estimate for a Single Rendezvous Leg

This section presents an analytical, sub-optimal, four-impulse strategy to assess the ∆V of a trajectory leg, for any
assigned pair of departure and arrival bodies that fly on circular orbits, which fairly approximates the behavior of the
time-fixed optimal solution when the allowed travel time is sufficiently large.24

Assuming that departure and arrival orbits are not too far apart, the minimum-∆V solution is represented by
a Hohmann transfer, possibly preceded and/or followed by coasting arcs on departure/arrival orbits which allow the
correct phasing required by this kind of maneuver. Let θ1,0 (respectively, θ2,0), be the true anomaly at time t = 0 of the
departure (respectively, arrival) body, flying on circular orbits of radius r1 (respectively, r2). The departure coasting arc
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r3

r1
r2

θ1,0
θ2,0

Figure 3: Chaser trajectory according to the sub-optimal rendezvous strategy adopted as heuristic.

duration, that is, the time Twait required to attain the correct phase γ? = π−ω2TH12 between departure and arrival body
can be evaluated as:

Twait =
∆γ

−γ̇
=
θ2,0 − θ1,0 − π + ω2TH12

ω1 − ω2
if r1 < r2 (17)

Twait =
2π − ∆γ

γ̇
=
θ2,0 − θ1,0 − π + ω2TH12 − 2π

ω1 − ω2
if r2 < r1 (18)

By comparing the available maximum transfer time Tmax with the sum of the waiting time Twait plus the time

spent on the Hohmann transfer TH12 = π
√

a3
12/µ, one obtains a condition for the availability of the Hohmann transfer:

Twait + TH12 ≤ Tmax (19)

Whenever Eq. (19) holds, the cost of the transfer leg is easily evaluated as ∆Vh of the Hohmann transfer. If the
Hohmann transfer is not possible, the mission scheme depicted in Figure 3 is adopted: the maneuvering spacecraft
is injected into a circular (either internal or external) waiting orbit of radius r3 with an Hohmann transfer "1-3", of

semi-major axis a13 = (r1 + r3)/2 and duration TH13 = π
√

a3
13/µ, in order to adjust its phase with respect to the target

body. A second Hohmann transfer "3-2", of semi-major axis a23 = (r2 + r3)/2 and duration TH23 = π
√

a3
23/µ is then

used to close the rendezvous. The rendezvous equation, which imposes the equality of chaser and target position at the
end of the maneuver, is enforced:

∆θ0 =
(
Tmax − TH13 − TH23

)
ω3 − Tmaxω2 + 2krevπ (20)

with ∆θ0 = θ2,0 − θ1,0 ∈ [0, 2π].
This nonlinear equation in r3 admits a family of solutions, parameterized by krev ∈ N , that accounts for the (pos-

sibly different) number of revolutions performed by the maneuvering spacecraft with respect to the target. However, we
are interested to the minimum ∆V solution only, therefore we can safely restrict our search to the cases corresponding
to the largest inner orbit (krev = 1) and the smallest external orbit (krev = 2). Depending on the initial relative phasing of
the two bodies, relative angular velocity, and maximum allowed travel time, either solution might be the best one. Both
solutions are thus evaluated and compared each other. The one with the lower cost is retained and the corresponding
∆V is used as a cost estimate.

Figure 4(a) presents the results of a Monte Carlo analysis over 105 trials with randomly chosen target body
semi-major axis (normalized with respect to r1), departure phase, and maximum travel time, showing a relatively equal
amount of cases where internal and external solution are optimal. Figure 4(b) presents the distribution of r3 over a
number of trials for an orbit rising maneuver, with assigned r2 > r1, confirming that waiting orbits are internal for
krev = 1 and external in case of krev = 2.

The effectiveness of this sub-optimal solution has been verified by comparing the heuristic value with the optimal
solution provided by full optimization in a few relevant cases. Typical differences are in the range of 0.2 ÷ 3%, with
a few peaks at +10% when the travel times becomes too short for this mission scheme to be practical. The absolute
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(a) Relative frequency of the optimal value of the parameter
krev.
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(b) Normalized distribution of the inner radius r3 for a number
of orbit raising maneuvers.

Figure 4: Monte Carlo simulation with randomly chosen target body radius, initial phasing, and maximum travel time.

values of the difference usually do not exceed 10 m/s, and thus are deemed reasonable. With respect to other heuristics,
the proposed approach provides the additional benefit of being related to a real, feasible, mission scheme. As a result,
the heuristic value represents a conservative estimate of the actual ∆V .

3.2 Outer-Level Optimization

3.2.1 Time-Free Tour

Under the assumption that both departure and arrival bodies fly on coplanar circular orbits and that the allowed mission
time is sufficiently large, the optimal transfer is always a Hohmann transfer. The cost ∆V(i, j) for moving from a
departure body i to an arrival body j is the same, regardless of the specific departure/arrival epochs. The problem thus
reduces to the search for the sequence of encountered bodies that minimizes the total velocity increment.

Let p = {p1, p2, . . . , pN} ∈ P
N be a permutation of N, non repeated, positive, integer elements {1, 2, . . . , N}.

The time-free tour optimization problem can be written as:

min
p∈PN

N∑
k=1

∆V(pk−1, pk) (21)

where p0 = 0 denotes the chaser. Transfer cost for any pair of arrival/departure bodies can be preliminary evaluated
and collected in a matrix of transfer costs ∆Vi, j of dimensions i ∈ [1..N] ∪ {0} by j ∈ [1..N].

An attentive reader will notice that this problem is quite similar to the well-known traveling salesman problem,
for which a large literature is available. For this peculiar problem, fast solution techniques exist for solving problems
involving up to a few hundreds of "entries".

3.2.2 Time-Fixed Time-Uniform Tour

The solution of the previous problem provides a lower bound on the overall tour cost, but may not provide a reasonable
guess to the solution of the original problem. In fact, the perfect phasing required by the Hohmann transfer might
never occur due to the existing time-constraint on the overall mission duration. For time-fixed rendezvous maneuvers,
transfer costs are highly sensitive to the initial phasing, that is, to the departure epoch, and to the allowed transfer
duration. However, under the assumption that the duration of all transfers is exactly the same, a relaxed problem can
be formulated. The epoch of the k-th encounter is readily available as tk = k TM/N. The problem reduces again to the
search for the optimal permutation of the target sequence p ∈ PN , but, in this case, the cost associated to the transfer
from a target i to a target j also depends on the position k of the leg into the sequence. The time-fixed time-uniform
tour problem can be written as:

min
p∈PN

N∑
k=1

∆V(pk−1, pk, k) (22)
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where p0 = 0 denotes the chaser, and ∆V(i, j, k) indicates the cost associated to the transfer from a target i to a
target j, starting at time tk−1 and ending at time tk. All transfer costs can be preliminary evaluated and collected in a
3-dimensional array ∆Vi, j,k.

Following the analogy established between the time-free tour and the TSP, this combinatorial optimization prob-
lem is similar to the Time-Dependent TSP, where the cost for moving from a city to another varies with time (that is,
the position in the sequence). Despite being harder to solve, some general-purpose techniques for the standard TSP
still apply to the TD-TSP.25

3.2.3 Time-Fixed Time-Discrete Tour

Eventually, if the encounter epochs are discretized over a finer time-grid, one obtains a combinatorial optimization
problem with a solution closer to the solution of the original problem and a formulation similar, to a certain extent, to
the two previously defined touring problems.

Let τ = {τ0, τ1, . . . , τN s } be a discrete time grid with uniform, equidistant points, where N s = N D, and D is
the number of divisions introduced into each "previously considered" time-slot. ∆V(i, j, τh, τh+m) denotes the cost for
moving from body i to body j, departure epoch τh, and arrival epoch τh+m. In this case, both the target sequence
and the location of the encounter epochs over the grid are searched for. However, all decision variables can be col-
lapsed into "one" decision variable, that is a permutation Π ∈ PN s

with a number of elements equals to the (discrete)
number of available encounter epochs. Permutation elements of value greater than N are considered as blanks, thus
revealing the encounter sequence p, and the position of non-blank elements reveals a vector of encounter epochs
t = [t1, t2, . . . , tN], where the element tk is the arrival epoch at the body pk. An example is proposed in Figure 5 for
N = 5 and D = 3, showing a permutation Π ∈ PN s

which reveals a target sequence p = {1, 3, 2, 4, 5} and encounter
epochs t = {τ2, τ5, τ7, τ11, τ15}.

Figure 5: An example of a permutation encoding/decoding for an 5x3 Time-Fixed Time-Discrete tour.

The time-fixed time-discrete tour problem can be thus written as:

min
Π∈PNs

N∑
k=1

∆V(pk−1, pk, tk−1, tk) (23)

p = {Πh | Πh ≤ N ∀h ∈ [1,N s]} (24)
t = {τh = h∆T | Πh ≤ N ∀h ∈ [1,N s]} (25)

with p0 = 0 being the chaser, and ∆T = TM/(ND) the time unit of the time grid.
Even though the problem is now well different from a TSP, the proposed formulation still poses the problem as a

permutation optimization problem (on a higher dimension), and thus it can be solved with the same algorithm used for
the other touring problems.

Remark 1

The number of divisions D should be kept small, because i) a rough evaluation of the encounter epochs is sufficient,
as the attained solution will be further refined within the inner-level optimization step; ii) a large number of divisions
makes the problem too similar to the original MINLP, hence more difficult to solve; iii) the proposed heuristic works
well if there is enough time to perform several revolutions; reducing the minimum valid travel time ∆T = TM/(ND)
makes the heuristic less reliable and may undermine our efforts. As a result, a number of divisions D = 2 or D = 3
appears as a good trade-off value for the problem at hand.

Remark 2

As in the other touring problems, one may pre-compute all transfer costs for speeding up the function evaluation (hence
the whole optimization process). A 4D tensor of dimensions (N + 1) × N × (N D − 1) × (N(D − 1) − 1) is needed in
principle. However, one may notice the monotonic, non-increasing, behavior of ∆V with transfer time and decide to
limit the calculus to transfers of duration M∆t, assuming the same cost for longer transfer. A 4D tensor of dimensions
(N + 1) × N × (ND − 1) × M would now be required. Apart from reducing the size of the tensor, this treatment has the
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additional benefit of guiding the solver toward a trajectory with more uniform travel times, which might be good from
an operational point of view.

3.3 Inner-Level Optimization

Assuming that the target sequence S A has been selected and a rough estimation of the encounter epochs is available, the
MINLP problem in Eq. (15) reduces to a NLP problem. Two scenarios can be investigated: i) encounter epochs tk are
kept fixed at their nominal values t̄k; ii) encounter epochs are free to be optimized. In the first case, each body-to-body
transfer can be solved independently from the others, thus reducing the 8N problem to solving N easier sub-problems
each one of dimension 8, being N the prescribed number of targets to encounter. In the second case, encounter epochs
may vary in a neighborhood of the reference value, leading to an improved solution, but the whole trajectory must be
fully optimized. Lower and upper bounds of the encounter epochs are selected so that:

tk ∈
[
t̄k −

t̄k − t̄k−1

2
, t̄k +

t̄k+1 − t̄k
2

]
(26)

In the present paper, both scenarios are dealt with by using an in-house optimization code that implements a
multi-population self-adaptive Differential Evolution algorithm with a synchronous island-model for parallel computa-
tion, that have been developed in the contest of the Global Trajectory Optimization Competitions26, 27 and successfully
applied to other multi-encounter space trajectory optimization problems.28 DE is a population-based evolutionary algo-
rithm (EA), firstly introduced by R. Storn and K. Price in 199729 as a method to find the global optimum of non-linear,
non-differentiable functions defined over a continuous parameter space. As indicated by a recent study,30 DE exhibits
much better performance in comparison with several others continuous-variable meta-heuristic algorithms on a wide
range of real-world optimization problems, despite its simplicity. Being inspired by evolution of species, it exploits the
operations of crossover, mutation and selection to generate new candidate solutions. However, unlike traditional EAs
and GAs, the mutated solutions are generated as scaled differences of distinct individuals of the current population.
This self-referential mutation tends to automatically adapt the different variables of the problem to the natural scale of
the solution landscape, so improving the search potential of the algorithm. With respect a standard DE implementa-
tion, a self-adaptive scheme is implemented for automatically adjusting the values of scaling and crossover parameters.
Moreover, a multi-population paradigm, where each population evolves according to a specific mutation rule, allows
to achieve a nice balance between exploration and exploitation of the search space.

4. Genetic Algorithm

A Genetic Algorithm (GA) is used in the present paper for solving the combinatorial optimization problems described
in the previous sections. Genetic algorithms are well-known population-based meta-heuristic techniques inspired by
natural evolution. They have been successfully applied to a wide range of real-world problems of significant complex-
ity. A brief overview of the algorithm is here presented. Interested readers are suggested to refer to Reference 31 for
further details. A block diagram of the basic algorithm is proposed in Figure 6, highlighting the presence of three fun-
damental genetic operators (selection, crossover, and mutation) which form the backbone of any GA implementation.

Figure 6: Flow chart of Genetic Algorithm

Algorithm 1 PMX
Choose two random index a, b so that 0 ≤ a < b ≤ L
for all i ∈ [a, b] do

o1[i]← p2[i]
end for
c← p2[a : b]
for all i ∈ [1, a − 1] ∪ [b + 1,N] do

J ← p1[i] . Proposal
while J ∈ c do

find iJ so that p2[iJ] == J . map p1 into p2

J ← p1[iJ] . New proposal
end while
o1[i]← J . Accept the proposal

end for

Figure 7: Partially Mapped Crossover algorithm
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At the beginning, an initial population, that is, a collection of solutions (often referred as individuals or chro-
mosomes) is randomly generated, with an attempt to cover the search space as best as possible. At each iteration (i.e.,
generation), the fitness of each individual in the population is evaluated first. Then, a mating population is created by
selecting a number of individuals from the current population, according to a selection operator, which tries to pro-
mote individuals with a good fitness, without sacrificing diversity too much. Typical selection operators are Stochastic
Roulette Wheel and Tournament,31 the latter being the one used in the present application. Next, pairs of individuals
(parents) are randomly chosen from the mating population and combined for producing new solutions (offsprings) ac-
cording to a crossover rule. The underlying idea is that combining good solutions in some way allows to create new,
and hopefully better, solutions. The process is repeated until a new population (usually with the same dimension of the
previous one) is created. Eventually, a few randomly-chosen individuals of the offspring population undergo a mutation
process, with the aim of increasing the population diversity. This new population eventually replaces the previous one
and the process is repeated until some termination criterion (e.g., maximum number of generation) has been met. As
a minor, yet important, tweak, Elitism is enforced, that is, at the end of each generation, the Ne

p best individuals of the
parent population are copied into the offspring population, thus preserving the best solution from being accidentally
lost in the evolution process. Some control over the population diversity is often needed. The aim is to avoid an ex-
cessive uniformity between individuals that would result in a very inefficient use of the crossover operator, hence in a
waste of function evaluations. To overcome this problem, an epidemic mechanism is introduced. A diversity metric is
defined as the sum over the population of the infinity-norm between any pair of individuals in the search space. If the
diversity score falls below a given threshold, a large part of the population dies, that is, it is randomly re-initialized.
This mechanism cannot happens more than Nepidemic times and not two times within a number Nepidemic

G of generations.

While selection operators are usually problem-independent, crossover and mutation operators are tightly related
to the adopted encoding, that is, the way the real-word problem is described in terms of numerical variables. Depending
on the features of the decision variables, several encodings have been defined, with the most common being binary,
integer-valued, and real-valued encoding. In order to match the formulation developed in Section 3.2, a permutation
encoding is here considered, that is, each individual or chromosome is a permutation p ∈ PL. Each gene takes an
integer value in the range [1, . . . , L], and two genes in the same individual can not have the same value at one time.
Standard, general-purpose, crossover operators (such as, one-point, two-point, or uniform crossover) cannot be applied
to a permutation without producing unfeasible offspring, that is, introducing multiple copies of the “entries”. However,
several permutation-preserving genetic operators, which have been developed for the permutation encoding in the
context of the TSP problem, can be employed for solving the problem under investigation, such as Partially Matched
Crossover, Cycle Crossover, Order Crossover, Non-Wrapping Order Crossover, as well as many others.32, 33

The Partially Matched Crossover (PMX) devised by Goldberg34 has been adopted in the present paper, as it aims
to preserve both the order and position of as many entries as possible from the parents. A Pseudo-code of this algorithm
is presented in Figure 7. An offspring is created starting from a sub-string (or cut) of the first parent (p1), in the same
fashion as in a two-point crossover. The remaining entries are taken from the other parent (p2). Entries not appearing
in the cut are kept in the same position as they appear in p2. Conflicts are resolving using p1 as a map for p2.

Mutation operators are also of great relevance in the framework of genetic algorithms, as they allow to escape
from situations of premature stagnation of the population on a sub-optimal solution, and their impact on the effective-
ness of the algorithm should not be underestimated. Once again, an abundance of permutation-preserving mutation
operators are documented in literature. In the present application, a reverse mutation operator is adopted: whenever an
individual p must be mutated, two indices i < j are randomly chosen and the new individual pnew is created as a copy
of the original one, but for the genes from i to j that are copied in a reversed order, that is pnew(i : j) = p( j : i).

4.1 GA hyperparameter

The performance of a genetic algorithm clearly depends on the choice of selection, mutation and crossover operators,
but also on several “hyper-parameters”, such as population size (nP), number of generations (nG), crossover probability
(pc), that represents the percentage of the parents replaced by offspring, mutation rate (pm), that is, the probability
that one individual will undergo a random mutation, and other operator-specific parameters, such as the depth of the
reverse operator (i.e., the maximum number of element of the swath that will be reversed). A proper tuning of these
hyperparameters may greatly improve the solution capability of GA. However, the optimal tuning of a genetic algorithm
is documented to be problem dependent, and represents an NP-hard problem by itself. Therefore, a preliminary tuning
is usually done on a simplified, possibly scaled, version of the optimization problem of interest, with the hope to capture
all the relevant features of the original problem.
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5. Numerical Results

In this section numerical results are proposed for various touring missions of pre-determinate length. Orbital parameters
of both chaser and targets are provided in Table 1.

Chaser Targets
ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r [km] 7000 6900 6910 6930 6940 6950 6960 6980 7010 7020 7030 7050 7060 7070 7080 7090
θ0 [deg] 0 -5 10 15 35 -30 -10 25 20 -25 -15 5 -35 30 -20 -40

Table 1: Chaser and targets initial orbital parameters.

(a) 10-target mission (b) 12-target mission

Figure 8: Success rate as a function of population size, for an assigned number of function evaluations

A preliminary analysis has been carried out for assessing the effectiveness of the proposed genetic algorithm for
the combinatorial problems formulated in Section 3.2. The time-fixed time-uniform tour of dimension N reduces to the
search of the optimal permutation p? ∈ PN among the N! existing ones. Instances of the time-fixed time-uniform tour
for a number of targets N ≤ 12 are sufficiently small that allow an exhaustive search to be completed in a reasonable
amount of time. The influence of population size (nP) and number of generations (nG) for missions with 8, 10 and
12 targets has been studied. In particular, it is interesting to understand if, for a given amount of function evaluations
FES = nG · nP, an optimal allocation of trials exists. Figure 8 highlights the influence of the population size (nP) on
the success rate assuming the maximum number of function evaluations (FES = nG · nP) fixed. It is apparent that the
choice of the population size is not significant for low-dimension problems, such as the 10-target mission. Instead, for
the 12-target mission, a population of 64 or 128 elements seems to correspond to the “best” allocation of trials.

Effects of crossover (pc) and mutation (pm) probability on the success rate for the 12-target mission have been
also investigated. Figure 9 presents the success rate versus the number of generations for the 12-target time-uniform
tour. For each configuration, 100 independent runs have been performed. According to the attained results, the best
configuration appears to be pc = 0.9 and pm = 0.15. Also, the algorithm performance appears almost insensitive to
variations of these hyperparameters.

The same genetic algorithm has been also adopted for the time-fixed time-discrete tour, which is significantly
more difficult than the corresponding time-uniform version, but should provide a better starting guess to solve the orig-
inal problem. The optimal solution of the time-discrete tour cannot be attained by a brute-force search in a reasonable
amount of time, as the number of possible permutations for a N × D tour problem goes roughly as (ND)!. For the sake
of conciseness, only the results concerning two cases, that is, the 8-target and 15-target missions, are here presented.
For each of these missions, a number of independent runs of the genetic algorithm have been carried out. The best
found solution is elected as putative optimum and used as an initial guess for the inner-level optimization problem,
with the aim of approaching a solution sufficiently close to the unknown global optimum in terms of the required total
velocity increment.

The inner-level optimization has been carried out by using a 4-island DE optimization engine, with 5 Nvar agents
per tribe and a maximum number of generations equal to 10000, being Nvar the number of continuous decision vari-
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(a) Effect of the crossover rate, for pm = 0.15 (b) Effect of the mutation rate, for pc = 0.95

Figure 9: Sensitivity analysis on the success rate of GA by varying the crossover probability (pc) and the mutation rate
(pm) for the 12-target mission, with population size nP = 64.

ables of the considered problem. A comparison between the minimum ∆V obtained through the GA, the DE with
fixed encounter times and the DE with free encounter times, for the 8-target missions and the 15-target missions, are
presented in Tables 2(a) and 2(b), respectively. Instead, the complete results for the 8-target and 15-target missions in
terms of optimal target sequence, encounter times and ∆Vs are reported in Tables 3 and 4, respectively. It is possible to
note that the difference between the GA and fixed-times DE solutions is in the order of 1-2%, that is the typical error
of the employed heuristic; thus, results confirm its effectiveness. The difference in the minimum ∆V is far greater (up
to 20%) if the DE algorithm is left free to modify the encounter times. Indeed, in this case, the algorithm is able to
perform a more appropriate sizing of the time window allocated for each leg, shortening or extending legs as needed.
As a result, the obtained trajectories are composed, for the great part, by Hohmann transfers and 3-impulse legs; a few
4-impulse legs are anyway traveled when the time window is too short and a fast transfer is thus required. This result
is clearly visible in Figure 10, which shows the radius versus time along the whole transfer of the chaser for the 15 × 3
mission.

Figure 10: Radius r vs. time t for the 15x3 solution.

12

DOI: 10.13009/EUCASS2019-469



IMPULSIVE MULTI-RENDEZVOUS TRAJECTORY DESIGN AND OPTIMIZATION

(a) 8-target missions

GA DE DE
time-fixed time-free

8x1: ∆vtot = km/s 0.5061 0.4931 0.4408
8x2: ∆vtot = km/s 0.3767 0.3722 0.3587
8x3: ∆vtot = km/s 0.3344 0.3296 0.2969

(b) 15-target missions

GA DE DE
time-fixed time-free

15x1: ∆vtot = km/s 0.8016 0.7860 0.6356
15x3: ∆vtot = km/s 0.6638 0.6287 0.6217

Table 2: Attained solutions at various stages of the optimization procedure. GA refers to the solution of the outer-
level problem, DE (time-fixed) and DE (time-free) refer to the refined solution attained after completing the inner-level
optimization, assuming the encounter epochs respectively fixed or free to be optimized.

Table 3: Optimal 8-target sequences.

Mission 8x1: ∆vtot = 0.44092 km/s
ID 8 6 7 5 4 3 2 1
t [d] 0.5050 1.0851 1.5569 1.8889 2.4740 2.6984 3.3499 3.7777
∆v [km/s] 0.0340 0.0270 0.0109 0.0163 0.1450 0.0481 0.0951 0.0644

Mission 8x2: ∆vtot = 0.35851 km/s
ID 6 8 5 7 4 3 2 1
t [d] 0.2830 0.5894 0.7794 1.1100 1.6894 1.9526 2.8445 3.7777
∆v [km/s] 0.0217 0.0270 0.0324 0.0644 0.1275 0.0054 0.0556 0.0244

Mission 8x3: ∆vtot = 0.29694 km/s
ID 1 3 2 4 7 5 6 8
t [d] 0.0788 0.4176 0.6928 0.7870 1.5407 1.6361 1.7625 3.7777
∆v [km/s] 0.0545 0.0325 0.0294 0.0165 0.0808 0.0163 0.0054 0.0616

Table 4: Optimal 15-target sequences.

Mission 15x1: ∆vtot = 0.63545 km/s
ID 6 7 2 1 10 9 4 3 14 8 12 13 5 11 15
t [d] 0.2361 0.6654 1.1236 2.1038 2.3611 3.0694 3.2726 3.8059 4.0351 4.7222 5.4189 5.6867 6.3350 6.6241 7.0833
∆v [km/s] 0.0217 0.0110 0.1206 0.0055 0.0706 0.0291 0.0433 0.0380 0.0807 0.0374 0.0267 0.0112 0.0645 0.0539 0.0212

Mission 15x3: ∆vtot = 0.62149 km/s
ID 11 10 14 4 3 2 8 15 9 6 1 5 12 13 7
t [d] 0.1342 0.6262 1.8067 2.0162 2.2921 3.1081 3.2776 3.9645 4.5971 5.0277 5.2001 5.6771 5.7980 6.1231 7.0833
∆v [km/s] 0.0268 0.0229 0.0598 0.0753 0.0186 0.0694 0.0543 0.0426 0.0373 0.0324 0.0328 0.0323 0.0592 0.0053 0.0524

6. Conclusions

A bi-level optimization procedure has been proposed for the design of the multi-rendezvous trajectory of a chaser
spacecraft visiting all the objects in a prescribed set. The goal is to minimize the overall propellant consumption, while
completing the tour within a given amount of time. The features of the combinatorial, outer-level problem, i.e., the
problem concerning the definition of the optimal encounter sequence together with a preliminary evaluation of the
epochs at each encounter, have been highlighted. A formulation of the outer-level problem, which permits different
time-lengths for each rendezvous maneuver, was also presented. The growth in the problem complexity is rewarded
by an increased capability of attaining a solution closer to the optimum of the complete MINLP problem. A genetic
algorithm with a permutation-preserving encoding has been used to solve the combinatorial optimization problem.
A simple, sub-optimal, analytic solution of the single-target rendezvous problem was adopted as heuristic for a fast
evaluation of the ∆V associated to each leg, without studying it in full details.

The attained solution was further refined by assuming the encounter sequence fixed and optimizing the multi-
impulse rendezvous maneuver: each body-to-body transfer is described by means of a peculiar parameterization based
on the position of the impulses, whose total velocity increment is minimized. Numerical solutions are presented for a
set comprising up to 15 target bodies. Results suggest that, by coupling the proposed ∆V heuristic with a time-discrete
time-fixed formulation with time-discretization factor 3, one attains a trajectory that is very close to the solution of the
full mixed-integer nonlinear programming problem, whereas the overall computational effort is significantly reduced.
Future research on the problem at hand will be direct to assess the effectiveness of other meta-heuristic algorithms,
such as Simulated Annealing and Tabu-Search, either in place or together with Genetic Algorithms. The use of local
optimization operators to speed up the convergence will be also investigated, leveraging on available classical TSP
heritage.
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