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Abstract 
 

Chemical species densities like H2O and CO2 and thermodynamic data like pressure and temperature 

are key parameters characteristic of a combustion reaction. Measurements of these parameters can be 

used in numerical simulations in order to improve engine design and efficiency. This article present an 

extension of the Tunable Diode laser Absorption Spectroscopy (TDLAS) by adding of a tomography 

technique in order to obtain two dimensional mapping of chemical densities, pressure and temperature 

in aeronautical flames. This article presents the principle of the reconstruction method and several tests 

of the method through simulations and experiments. 

 

Introduction 

The absorption spectroscopy is a well-known and efficient method used to characterize chemical species 

density and thermodynamic parameters in gas and more particularly in combustion flames. In a homogenous 

medium, this technique provides high precision measurements. However, in an inhomogeneous medium like a flame 

this precision is deteriorated. Indeed, the measurements are integrated on the beam path and the spatial resolution 

within this path is lost. On the other hand, spatial resolution can be recovered by using several lasers beams acquired 

at different positions and angles around the flame and a tomographic reconstruction on the TDLAS spectral data. The 

combination of the spectral measurement from the TDLAS method with a tomographic algorithm is called Tunable 

Diode laser Absorption Tomography (TDLAT). TDLAT provides two dimensional maps of chemical density, 

pressure and temperature. However, in order to work properly a tomographic algorithm needs several measurement 

beams at many different positions and angles. This is an issue since combustion benches usually lack of optical 

access. These limited accesses have to be accounted for in the tomographic algorithm to obtain correct 

reconstructions.  

First, this paper presents the theoretical principles of the TDLAT method. Second, the experimental device is 

described along with its associated constraints, and their impact on tomographic reconstruction results is discussed. 

Then, numerical simulations results and experimental reconstructions made on a McKenna Burner are presented. 

Finally, conclusions about the efficiency of the developed are drawn and improvements on the reconstruction method 

code and experimental device are proposed. 

1. Tunable Diode Laser Absorption Tomography principle 

 The principle of the TDLAS method is based on the Beer-Lambert law that describes, for a particular wave-

number range, the attenuation of a laser beam intensity when it goes through a gaseous medium as a function of the 

chemical density species, pressure and temperature [1]. When considered as a function of the wave-number, this 

attenuation curve is called an absorption spectrum. Tomography uses a large number of these curves, referred to as 

projection or projection spectra, to reconstruct a two dimensional mapping of the involved physical parameters. Each 

of these parameters (pressure, temperature and species concentration) are modelled as piecewise constant functions 

defined over a grid of pixels recovering the whole flame section, see Figure 1. 
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Figure 1: Modelling a flame section as a pixel grid. In each pixel, the density of chemical species, the pressure and 

the temperature are assumed constant 

According to the Beer-Lambert law, the attenuation of the laser beam intensity indexed 𝑗 is described by equation 

(1): 

 

𝐼𝑗(𝜎)

𝐼0(𝜎)
= exp (−∑∑𝑆(𝜎𝑘𝑟𝑙 , 𝑇𝑙). 𝑋𝑘𝑙 . 𝑓(𝜎 − 𝜎𝑘𝑟𝑙 , 𝑃𝑙 , 𝑇𝑙)𝑤𝑗𝑙

𝑘𝑟𝑙

) 
(1) 

 

With 𝜎 the wave-number (cm
-1

), 𝑙 the pixel index, 𝐿2 the total number of pixels in the region of interest, 𝑘 the 

chemical species isotope, 𝑟 the absorption line of this isotope, 𝑋𝑘𝑙 the density of the isotope 𝑘 in the pixel 𝑙 
(molecule.cm

-3
), 𝑃𝑙  the pressure inside the pixel 𝑙 (bar), 𝑇𝑙  the temperature in the pixel 𝑙 (K), 𝑤𝑗𝑙 the intersection 

length between the beam 𝑗 and the pixel 𝑙 (cm), 𝑓(𝜎 − 𝜎𝑘𝑟𝑙 , 𝑃𝑙 , 𝑇𝑙) the Voigt profile (cm) which describe the line 

shape as a function of the pressure and temperature and 𝑆(𝜎𝑘𝑟𝑙 , 𝑇𝑙) the line strength (cm
-1

.molecule
-1

.cm
2
) 

proportional to the temperature. The evolution of the line strength according to temperature is given by equation (2): 

 

𝑆(𝜎𝑘𝑟𝑙 , 𝑇𝑙) = 𝑆(𝜎𝑘𝑟𝑙 , 𝑇0).
𝑄𝑘(𝑇0)

𝑄𝑘(𝑇𝑙)
.
1 − exp (−

ℎ𝑐
𝑘𝐵
.
𝜎𝑘𝑟𝑙
𝑇𝑙
)

1 − exp (−
ℎ𝑐
𝑘𝐵
.
𝜎𝑘𝑟𝑙
𝑇0
)
. exp (−

ℎ𝑐

𝑘𝐵
𝐸𝑘𝑟 (

1

𝑇𝑙
−
1

𝑇0
)) 

(2) 

 

With 𝑄𝑘  the partition function of the isotope 𝑘, 𝑇0 = 296 𝐾 the atmospheric temperature, ℎ the Planck constant 

(J.s), 𝑐 the speed of light (cm.s
-1

), 𝑘𝐵 the Boltzmann constant (J.K
-1

), 𝐸𝑘𝑟 the internal energy (cm
-1

) of the line 𝑟 of 

the isotope 𝑘. Values of 𝑆(𝜎𝑘𝑟𝑙 , 𝑇0) and of 𝑄𝑘 are given for each molecules in the database HITRAN [2]. The Voigt 

profile is the convolution of a Lorentzian profile with a Doppler profile which is calculated by the numerical 

approximation of Hui et al. [3]. 

 

For a tomography calculation, we define the local absorption of a pixel indexed 𝑙 noted 𝛼𝑙(𝜎) expressed in cm
-1

. This 

value is the contribution of pixel 𝑙 to the absorption of the beam intensity. It is given by equation (3): 

 

𝛼𝑙(𝜎) =∑𝑆(𝜎𝑘𝑟𝑙 , 𝑇𝑙). 𝑋𝑘𝑙 . 𝑓(𝜎 − 𝜎𝑘𝑟𝑙 , 𝑃𝑙 , 𝑇𝑙)

𝑘𝑟

 (3) 

 

The calculation of a projected spectrum for a particular beam by taking account of all the pixels crossed by the beam 

path is done by a matrix product given by equation (4): 

 

𝒑𝒋(𝝈) = 𝑙𝑛 (
𝐼𝑗(𝜎)

𝐼0(𝜎)
) = 𝑤𝑗𝑙 . 𝜶𝒍(𝝈) 

(4) 

 

With 𝒑𝒋(𝝈) the projected spectrum of the beam 𝑗 as a function of the wave-number 𝜎, 𝜶𝒍(𝝈) the local absorption in 

the pixel 𝑙 as a function of the wave-number and 𝒘𝒋𝒍 a matrix that contain intersections lengths between each beam 𝑗 

and each pixel 𝑙. Such matrix W is used currently in computed tomography methods like Algebraic Reconstruction 

Technique (ART) and it is called the system matrix [4]. Then, by knowing the trajectory of each beam, it is possible 
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to know each coefficient of the system matrix Wand so to compute every spectrum 𝒑𝒋(𝝈) that it is likely to be 

measured in the region of interest.  

 

The objective of the tomographic method is to retrieve the contributions 𝜶𝒍(𝝈) and to deduce values of 𝑷𝒍, 𝑻𝒍 
and 𝑿𝒌𝒍. The TDLAT method first measures several absorption projected spectra around the flame with a known 

beam arrangement. These spectra are gathered in a vector 𝒑𝒎𝒆𝒔. sApplying the system matrix on initial (𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍) 
profiles provides predicted projections gathered in a vector called 𝒑𝒄𝒂𝒍𝒄(𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍). Then, adopting an iterative 

least-squares minimization algorithm, the initial profiles of pressure, temperature and densities are corrected 

iteratively until minimization of the mean squared error between the computed and measured spectra. The iterative 

approach is illustrated on Figure 2. One iteration of this non linear tomographic reconstruction [5]  is given by the 

equation (5): 

 

𝐶 = ‖𝒑𝒎𝒆𝒔 − 𝒑𝒄𝒂𝒍𝒄(𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍) −
𝜹𝒑𝒄𝒂𝒍𝒄(𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍)

𝜹(𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍)
(𝜹𝑻𝒍, 𝜹𝑷𝒍, 𝜹𝑿𝒌𝒍)‖

2

 
(5) 

 

With 𝐶 the first-order expanded linear criterion which is to be minimized at the current iteration, 𝒑𝒎𝒆𝒔 the measured 

projected spectra, 𝒑𝒄𝒂𝒍𝒄(𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍) the projected spectra calculated numerically with initialized profiles of 

pressure 𝑷𝒍, temperature 𝑻𝒍 and densities 𝑿𝒌𝒍, 
𝜹𝒑𝒄𝒂𝒍𝒄(𝑻𝒍,𝑷𝒍,𝑿𝒌𝒍)

𝜹(𝑻𝒍,𝑷𝒍,𝑿𝒌𝒍)
 the partial derivatives of calculated spectra as a function 

of (𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍) in each pixel gathered in a Jacobian matrix,(𝜹𝑻𝒍, 𝜹𝑷𝒍, 𝜹𝑿𝒌𝒍) incremental variations of pressure, 

temperature and densities to add to the initials in order to fit calculated spectra with measured spectra. 

 

 

Figure 2: TDLAT algorithm principle 

 

2. Regularisation of the TDLAT algorithm 

The least-squares algorithm presented in the previous section needs enhancements in order to work properly on 

real data. First, because of the limited number of measured beams. Indeed, this method has to be used on combustion 

benches which allow only very few optical access. Moreover, the TDLAS spectrometers are mostly constituted of 

fibered lasers which imply fiber focalization and difficulty to maintain the required power level from the source to 

the detectors. This let only few possibilities to divide the optical power into different beams. A second major issue is 

that experimental spectra are always contaminated by noise. These limitations on the data lead to unexploitable 
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results if one relies on the previously describe iterative least-squares method. The fundamental reason is that 

tomography is a ill-posed problem, or, in other terms, that the system matrix is ill-conditioned : lack of data and 

measurement noise then translate into large perturbations on the reconstructed profiles. To solve these problems, a 

solution currently used in linear tomography is Tikhonov regularization [6]. The basic idea of Tikhonov 

regularization is to add a smoothness penalty to the least-squares data term. It means a prior information on the 

continuity of pressure, temperature and species density in the flame which is justified physically by the thermal and 

mass diffusion. As a consequence, values of pressure, temperature and density are not truly different between two 

neighbor’s pixels. It is implemented in the equation (5), by addition of regularization penalty terms  (𝑹𝑷, 𝑹𝑻, 𝑹𝑿𝒌) 

which are proportional to the sum of squared horizontal and vertical gradients on the pixel grid applied on pressure, 

temperature and chemicals densities: 

 

𝐶 = ‖𝒑𝒎𝒆𝒔 − 𝒑𝒄𝒂𝒍𝒄(𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍) −
𝜹𝒑𝒄𝒂𝒍𝒄(𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍)

𝜹(𝑻𝒍, 𝑷𝒍, 𝑿𝒌𝒍)
(𝜹𝑻𝒍, 𝜹𝑷𝒍, 𝜹𝑿𝒌𝒍)‖

2

+ 𝜆𝑃𝑹𝑷 + 𝜆𝑇𝑹𝑻 + 𝜆𝑋𝑘𝑹𝑿𝒌  
(6) 

 

With: 

{
 
 

 
 𝑅𝑃 = ‖𝐷𝑥 . 𝑃‖

2 + ‖𝐷𝑦 . 𝑃‖
2

𝑅𝑇 = ‖𝐷𝑥 . 𝑇‖
2 + ‖𝐷𝑦 . 𝑇‖

2

𝑅𝑋𝑘 = ‖𝐷𝑥 . 𝑋𝑘‖
2 + ‖𝐷𝑦 . 𝑋𝑘‖

2

 

 

(7) 

With 𝑫𝒙 the horizontal derivative matrix, 𝑫𝒚 the vertical derivative matrix and (𝝀𝑷, 𝝀𝑻, 𝝀𝑿𝒌)  weighting coefficients 

that tune the regularization impact on the tomographic algorithm. Indeed, the regularization need to be strong enough 

to control the effect of noise on the measurement but not too much strong to keep the measurements information 

important in the reconstruction algorithm. It is then necessary to optimize the regularization parameters which is a 

difficult and still open issue when dealing with nonlinear inversion problems such as TDLAT. But first, we have to 

define first the conditions of the tomographic reconstructions which are the beam arrangement, the nature of flame 

environment and the experimental constraints of the TDLAS measurements. 

 

3. Experimental device and constraints on spectral inversion 

We will explain in this part the functioning of the TDLAS spectrometer used in our experiments, the calibration 

techniques and the environment of the measurement on an experimental MacKenna burner. A TDLAS measurement 

is done with an absorption spectrometer. Its principle is illustrated on Figure 3. 

 

 

Figure 3: Principle of a TDLAS spectrometer.  

Such spectrometer is generally composed of a laser diode tunable in wavelength. In the current case, the diode is 

tunable between 3706,3 𝑐𝑚−1 and 3707,0 𝑐𝑚−1 in order to acquire absorption line of H2O and CO2 detectable 

enough in the thermochemical conditions of the study. Laser instability and measurement uncertainty necessitate a 

precise spectral calibration for each spectrum acquired. Around 10% of the laser power is taken for this purpose. 

These 10% are divided in two parts that provide two calibration spectra used to calibrate the spectral resolution, see 
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Figure 4. The first part passes through a reference cell which contains H2O and CO2 vapor at  10 𝑘𝑃𝑎 and at a 

temperature of 300 𝐾, providing an absorption spectrum with identified absorption lines used as a reference. Low 

pressure leads to very thin absorption lines, which spectral position can be very precisely estimated. The second part 

of the light passes through a germanium crystal with polished faces at λ/10 used as Fabry-Pérot cavity to produce an 

interference figure (Figure 4). Interference lines separations in wave-number are known and dependent of physical 

properties of the cavity. The combination of these two spectral markers allows the absolute spectral calibration of 

measured spectra. 

 

 

Figure 4: Calibration spectra: reference line in low pressure cell in green and interference figure from the Fabry-

Pérot cavity in red 

The third part of the signal representing 90% of the total power is sent into the flame with optical fibbers connected 

to off-axis collimators. In the case of present study, the considered flame is a methane/air McKenna burner which 

produces a flat flame stable in time and with a circular symmetry. These conditions are obtained for particular 

conditions of flows parameters (Figure 5). 

 

  
(a) (b) 

Figure 5: Image of (a) burner McKenna and (b) of a configuration of stable flat flame for flows of 20mL/s of air and 

2mL/s of methane 

Moreover, before going into the flame, the beam is passing through atmosphere that is containing H2O and CO2 

vapor visible on the acquired spectra. So, in order to measure the effect of vapors inside the flame, it is essential to 

suppress the atmosphere contributions on absorptions lines first, an operation called “suppression of the spectral 

envelop”. It is based on the acquisition of a reference spectrum without the flame at the same position and angle so as 

to keep the same beam path (Figure 6). 

 

  
(a) (b) 

Figure 6: Measurement of the atmospheric contribution on absorption spectra, (a) measurement of the contributions 

of the flame and of the atmosphere and (b) quantification of the atmosphere contribution to suppress it on the 

acquired spectrum 

As a result, the contribution of the ambient air is quantified and it is possible to suppress this contribution on the 

spectrum acquired in the flame (Figure 7). 
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(a) (b) (c) 

Figure 7: Suppression of the spectrum envelop, (a) spectrum acquired with the flame and the atmosphere slice, (b) 

spectrum acquired without which quantify the atmospheric contribution and (c) the final spectrum without 

atmospheric contributions 

 

Suppression of the spectral envelop modifies the final spectrum used to the spectral inversion. Indeed, on the 

spectrum shown in Figure 7, it is possible to see three main absorptions lines: two H2O lines and one CO2 line 

between the two H2O lines. Another consequence is the suppression of the CO2 line. So it means that the 

spectrometers sees the CO2 specie only on in the atmosphere around the flame but not inside. As a result, in the 

others parts of the study, we will consider on numerical simulations and experimentations that there no CO2 visible 

in the flame. The reconstruction will only concern the H2O density. Moreover, the MacKenna burner makes a flame 

in the atmospheric pressure conditions. The pressure in the flame fluctuate around the atmosphere pressure but 

because of the noise and line deformations, the spectra are not very sensitive to the pressure and so we assume 

pressure constant and equal to atmospheric pressure in the entire the region of interest. As a result, the model of 

tomography reconstruction will be done only on H2O density and temperature profiles. The equations (6) and (7) then 

reduce to: 

 

𝐶 = ‖𝒑𝒎𝒆𝒔 − 𝒑𝒄𝒂𝒍𝒄(𝑻𝒍, 𝑿𝒌𝒍) −
𝜹𝒑𝒄𝒂𝒍𝒄(𝑻𝒍, 𝑿𝑯𝟐𝑶,𝒍)

𝜹(𝑻𝒍, , 𝑿𝑯𝟐𝑶,𝒍)
(𝜹𝑻𝒍, 𝜹𝑿𝑯𝟐𝑶,𝒍)‖

2

+ 𝜆𝑇𝑹𝑻 + 𝜆𝑋𝐻2𝑂𝑹𝑿𝑯𝟐𝑶
 

(8) 

With: 

{
𝑅𝑇 = ‖𝐷𝑥 . 𝑇‖

2 + ‖𝐷𝑦 . 𝑇‖
2

𝑅𝑋𝐻2𝑂 = ‖𝐷𝑥 . 𝑋𝑋𝐻2𝑂‖
2

+ ‖𝐷𝑦 . 𝑋𝑋𝐻2𝑂‖
2 

 

(9) 

4. Tomography scanning device 

The quality of a tomographic reconstruction is depending not on only on the number of beams available but also 

on their positions and their angles around the region of interest. First of all, because of the difficulties to keep enough 

light power in fibered path, only a few beams can be used to do correct measurements in the flame. So it is necessary 

to find a way to multiply the number of beams while keeping enough optical power. As a result, the tomographic 

device was oriented to choose measurement with scanning. Different possibilities have been studied but the better 

and chosen one is a configuration with five beams and with a rotational scanning. This configuration uses the 

rotation of a metallic crown whose centre is shifted from the flame centre. The scanning is done on amplitude of 90° 

around the flame. The amplitude of the rotation cannot be larger because of the tension that could be created on 

optical fibres. Then by choosing optimal positions of sources and detectors, it is possible to obtain the reproduction 

of five fan-beams around the flame (Figure 8). This beam arrangement allows the possibilities to see the flame in a 

lot of angles and positions. This beam arrangement is first considered within a numerical study to optimize the 

regularisation parameters on the model of equations (8) and (9) . Then, the same configuration will be tested 

experimentally on the MacKenna burner. 
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(a) (b) 

Figure 8: (a) Image of the rotation scanning device and (b) reproduction of a fan-beam measurement configuration 

around the region of interest 

5. Optimisation of regularisation parameters on the studied model 

 

In this part we will study in simulation the impact of the regularization parameters on the reconstruction quality. 

The objective is to study the impact of the regularization parameters on the tomographic reconstruction when two 

parameters are reconstructed and when one of them has a non-linear effect on the measured data. To do that, we will 

first define two profiles 𝑋𝐻2𝑂 and 𝑇 to study. These profiles are two images of 20x20 pixels representing a two 

dimensional Gaussian profiles which is considered as a rough approximation of the MacKenna burner shape (Figure 

9). 

  
(a) (b) 

Figure 9: Simulated two-dimensional phantoms reproducing the shape of (a) a H2O density profile and (b) a 

temperature profile of a MacKenna burner 

 

The quality of the tomographic reconstruction is dependent of the regularization parameters. The two main problems 

in the case of the TDLAT are the non-linearity of the problem and the multi-parameter optimization. Commonly, in a 

linear tomographic problem, the method used is the L-curve representation [7]. It consists to draw the regularization 

terms (9) as a function of the data match score for several 𝜆 values. The data match score  𝑀 is quantified by the 

residuals between measured spectra and reconstructed spectra: 

 

𝑀 = ‖𝒑
𝒎𝒆𝒔

− 𝒑
𝒄𝒂𝒍𝒄
(𝑻𝒍, 𝑿𝒌𝒍)‖

2
 

(10) 

 

The regularization term is quantified on the H2O density and the temperature by the terms defined in equation (9). 
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The L-curve representation consists to draw a regularization term 𝑅𝑋𝐻2𝑂 or 𝑅𝑇 for several values of 𝜆𝑋𝐻2𝑂 or 𝜆𝑇 as a 

function of the data match 𝑀.In practice, this technique did not proved to work well here, in particular due to the 

high non linearity of pcalc with respect to temperature.. As a result, we choose another approach to optimize the 

regularization. We choose to study a normalized error between the phantoms (called the ground truth profiles) and 

the rebuilt ones as a function of the regularization parameter. These errors are expressed as follows: 

 

{
  
 

  
 
𝑒𝑋𝐻2𝑂 =

‖𝑋𝐻2𝑂𝑔𝑡
− 𝑇𝑟𝑒𝑐‖

2

‖𝑋𝐻2𝑂𝑔𝑡
‖
2

𝑒𝑇 =
‖𝑇𝑔𝑡 − 𝑇𝑟𝑒𝑐‖

2

‖𝑇𝑔𝑡‖
2

 

 

(11) 

If we draw the difference between 𝑒𝑋𝐻2𝑂 as a function of 𝜆𝑋𝐻2𝑂
 (Figure 10 (a)), it is possible to see that the 𝜆𝑋𝐻2𝑂 =

1,0.10−7  coefficient gives the best reconstruction with the least difference between phantom and rebuilt profile. The 

minimum of 𝑒𝑋𝐻2𝑂 is given the best 𝜆𝑋𝐻2𝑂
 to choose in order to do an experimental reconstruction in the same 

conditions of beam arrangement and noise. The same operation can be done by representing 𝑒𝑇 as a function of 𝜆𝑇. 

This curve represented on Figure 10 (b) show that the value of 𝜆𝑇 = 3,0.10
−8 give the best error value. 

 

  
(a) (b) 

Figure 10: Reconstructions errors as a function of the 𝜆 coefficient on H2O density  and temperature reconstruction 

 

 

As a result, this optimisation gives separately a couple of optimal regularisation coefficient (𝜆𝑋𝐻2𝑂 , 𝜆𝑇). With Figure 

11 and Figure 12, it is possible to illustrate that these coefficients give the best reconstruction results when they are 

optimal. If they are too low the reconstructions are too noisy diverging and when it is too large , reconstructions are 

too smooth. 
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(a) (b) 

  
(c) (d) 

Figure 11: Different results of tomographic reconstructions of the temperature with fixed density for different values 

of regularisation coefficient: (a) with 𝜆𝑇 = 1,0.10−16 a too low, (b) 𝜆𝑇 = 3,0.10−8 the optimal value, (c) 𝜆𝑇 =
1,0.10−6 and  (d) 𝜆𝑇 = 1,0.10−5  a too large value 

 

  
(a) (b) 

  
(c) (d) 

Figure 12: Different results of tomographic  reconstruction of the concentration of H2O f the temperature with 

temperature fixed to the true value for different values of regularisation coefficient: (a) with 𝜆𝑋𝐻2𝑂 = 1,0.10
−16 a too 

low values, (b) 𝜆𝑋𝐻2𝑂 = 1,0.10
−7 the optimal value, (c) 𝜆𝑋𝐻2𝑂 = 1,0.10

−4 and  (d) 𝜆𝑋𝐻2𝑂 = 1,0.10
−3  too large 

value 

DOI: 10.13009/EUCASS2019-482



Vincent Corbas, Frederic Champagnat, Guy Le Besnerais, Ajmal Mohamed 

     

 10 

 

These results show that it is possible to reconstruct temperature or  density profiles separately if the other is known 

and fixed by choosing the optimal regularisation coefficient. However, in a real case, the two profiles need to be 

rebuilt simultaneously. But in this case we have found  that the couple (𝜆𝑋𝐻2𝑂 , 𝜆𝑇) that have been found by the two 

separate errors curves are not the optimal ones. Indeed, the resolution of the inverse problem by equation (8) gives 

the results of the Figure 13 which are not as good as the ones obtained separately. 

 

  
(a) (b) 

Figure 13: Results of tomographic rebuilt of (a) H2O density and (b) temperature by using the two optimal 

regularisation coefficients (𝜆𝑋𝐻2𝑂
, 𝜆𝑇) found by the L-curve method 

As a results, we conclude that the separate optimisation is not accurate enough  to choose an optimal 

couple (𝜆𝑋𝐻2𝑂 , 𝜆𝑇) for the complete calculation. So, it is necessary to find a way to optimise the couple (𝜆𝑋𝐻2𝑂 , 𝜆𝑇) 

simultaneously in order to take into account the mutual influence on the spectra of temperature and H2O density. As 

a result, we decide to optimize it by a parametric approach. The idea is to use the results of the reconstruction error 

curves from Figure 10 to do a first approximation of each optimal regularisation coefficient. After that, we choose for 

the couple (𝜆𝑋𝐻2𝑂 , 𝜆𝑇) two ranges around the first approximation of regularisation coefficients . The optimisation 

consists to do tomographic reconstruction of H2O density and temperature simultaneously for several 

couple (𝜆𝑋𝐻2𝑂 , 𝜆𝑇) in the specified range, and to calculate for each of them a sum of relative difference with the two 

ground truth profiles: 

 

𝐷𝑔𝑡 =
‖𝑋𝐻2𝑂𝑔𝑡

− 𝑇𝑟𝑒𝑐‖
2

‖𝑋𝐻2𝑂𝑔𝑡
‖
2 +

‖𝑇𝑔𝑡 − 𝑇𝑟𝑒𝑐‖
2

‖𝑇𝑔𝑡‖
2  

(12) 

 

As a result, it is possible to draw a map of relative difference 𝐷𝑔𝑡 as a function of 𝜆𝑋𝐻2𝑂 and 𝜆𝑇 like represented on 

the Figure 14. The couple that gives the weakest value of 𝐷𝑔𝑡  is the optimal couple to choose. 
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Figure 14: Representation of the difference 𝐷𝑔𝑡  as a function of 𝜆𝑋𝐻2𝑂
 and 𝜆𝑇 

According to the Figure 14, the best couple of regularisation coefficients is 𝜆𝑋𝐻2𝑂 = 3,0.10
−9 and 𝜆𝑇 = 1,0.10

−9. 

They are not the same than the ones calculated with independent error minimisation. If we draw the results for 

tomographic reconstruction with these coefficients, the results are the ones shown on the Figure 15. 

 

  
(a) (b) 

Figure 15: Tomographic reconstruction of (a) H2O density and (b) temperature profiles with the optimal 

couple(𝜆𝑋𝐻2𝑂
, 𝜆𝑇) 

So, this numerical study has shown that it is necessary to optimize the two regularisation parameters in the same time 

to obtain a good couple of (𝜆𝑋𝐻2𝑂 , 𝜆𝑇). However, these operations are not possible on experimental spectra because 

the ground truth profiles are not known. As a result, the future work is to find a way to optimize the two 

regularisations parameters only with experimental data. 

 

6. Tomographic reconstruction on experimental spectra 

In this part we will present an application of the tomographic algorithm on experimental spectra acquired on a 

MacKenna burner. The beam arrangement is that of Figure 8 (b). The hypotheses of constant atmospheric pressure 

and with no CO2 visible in the flame are kept on this case of reconstruction. The tomographic reconstruction involves 

H2O density and temperature. A lot of experimental problems have been met during this experiment and the spectral 

calibration processing. Indeed, the first problem is the large noise amount on the spectra. The second is the envelop 

suppression that deforms the line shape on some spectra (Figure 16 (a)). The shape of these lines can induce error on 

sought parameters and in particular on the temperature which is very dependent on the line shape. Moreover, due to 

suppression of the atmospheric contributions the spectra acquired outside the flame like Figure 16 (a) should appear 
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flat. The fluctuations visible on Figure 16 could be interpreted by the algorithm like some kind of absorption and bias 

the estimation. So, it has been necessary to perform pre-processing before the tomographic reconstruction.  

 

  
(a) (b) 

Figure 16: Example of two spectra acquired in the region of interest with (a) a spectra outside the flame and (b) 

inside the flame 

The first operation is to fit a rough template of the flame to the spectra. The template consists of top hat profiles of 

temperature or concentration. The diameter of the top-hat is fixed to 6cm, i.e. the diameter of the MacKenna burner. 

Location of top-hat centre, temperature and concentration inside top hat are free parameters that are fitted in the least 

squared sense to the measured spectra by minimization of score 𝑀(10). The intensities and positions of the two disks 

that give the best data fit are represented on Figure 17. 

 

  
(a) (b) 

Figure 17: Calibrated profiles of (a) H2O density and (b) temperature that gives the best data fitting 

These figures show that the flame is not positioned at image centre as it was expected. This shift is a consequence of 

inaccurate positioning of the metallic crown around the flame. The temperature inside this disk is 1900 𝐾 which 

corresponding of the expected value in this kind of burner. This data fitting is illustrated on Figure 18 that represents 

the two acquired spectra of Figure 16 in superposition to the same that are simulated through the template profiles. 

We can see on these two examples that these profiles give a good first approximation of a flame shape according to 

measured data. 
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(a) (b) 

Figure 18: Spectra acquired and given through the calibrated profiles in the region of interest with (a) a spectra 

outside the flame and (b) inside the flame 

The tomographic algorithm on the experimental data is then initialized with the profiles of Figure 17 with a correct 

pair of (𝜆𝑋𝐻2𝑂 , 𝜆𝑇). This pair of regularisation parameters has been obtained by manual tuning around values of 

(𝜆𝑋𝐻2𝑂 , 𝜆𝑇) found by simulations (Figure 15). We observed the reconstructed results and compared it with the 

expected shape of the density and temperature profiles to choose the best regularisation parameters pair.  The best 

pair gives the results represented on Figure 19.  As a result, the tomographic algorithm modifies the two template 

profiles in order to provide a best fitting of the data. 

 

  
(a) (b) 

Figure 19: Tomographic reconstruction with 𝜆𝑋𝐻2𝑂 = 3,0.10−6  and 𝜆𝑇 = 3,0.10
−9 of (a) H2O density and (b) 

temperature on experimental spectra 

 

The fitted spectra obtained with these profiles are represented on Figure 20. It is show that the spectra after 

tomographic optimisation have been changed and at the same time they have decrease the criterion of equation (6) 

and the residual of equation (10). The data fit is better than the one done only with the two H2O density and 

temperature top-hat profiles. 
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(a) (b) 

Figure 20: Measured spectra , given through the calibrated and the rebuilt profile in the region of interest with (a) a 

spectra outside the flame and (b) inside the flame 

By observation of the results of the Figure 19, the global shape of the MacKenna burner is respected. On the contrary 

of the template profiles, this reconstruction makes adjustment of this shape and shows some fluctuations inside the 

flame. On the other hand, some obvious errors are visible with the presence of H2O at the boundary of the domain, 

and large temperature at some points outside the flame. It is probably come from some kind of over-smoothing of the 

solution by the regularisation. So, in this case where the data are deteriorated by noise and residuals of the spectral 

envelop suppression, the data are not as reliable as it is needed. So the regularisation effect must be increase to 

process correctly the data but it has an effect to over-smooth the result. 

 

As a result, in case of large measurements error, the tomographic reconstruction should be tuned not to fit too closely 

to the data. In this case, it is important to optimise correctly the regularisation parameters to compensate these errors. 

Conversely, the regularisation must not be too important in order to avoid over-smoothing of the solution. As a 

conclusion, a compromise must be found to between the data fit and the regularisation and so it is necessary to study 

in depth a protocol to optimize the regularisation parameters with experimental data. 

 

Conclusion 

We have proposed a TDLAT method based on an iterative least-squares optimization of a regularized 

criterion. This method has been studied both numerically and experimentally on a test case involving a McKenna 

burner and a scanning multi-line spectrometer. 

 

On the experimental aspect, we have observed that the calibration process is an important source of systematic 

errors. This step needs to be improved in order to have better projected spectra required for a detailed reconstruction. 

In this line, it could be important to derive a precise model of the envelop suppression operation on the measured 

signal and to characterize more precisely the effect of noise on absorption lines. 

 

On the algorithmic aspect, our method gives satisfactory results when knowing the regularization parameters and an 

initial guess. Improvements may concern the search for the regularisation parameters in a multi-dimensional 

problem, ie. involving density, pressure and temperature reconstruction simultaneously, which is, besides, nonlinear. 

On the simulation study, we have tried to implement a parametric method to improve the parameters using the norm 

of the difference of the reconstructed profiles with respect to ground truth profiles. Still, simulation is not able to 

reproduce the degradations of the signal that occur in a real experiment; hence the estimated parameters are not 

directly usable in experiments. Classical method for choosing the parameter such as the L-curve seem not well 

adapted to the problem. Hence the automatic tuning of the regularization parameters in real data processing is, in our 

opinion, still an open issue. 

 

The perspectives of this work are an improvement of the tomographic algorithm and of the acquisitions techniques. 

In a more long term, the objective is to implement the experimental device and the algorithm on turbulent flames and 

to add the reconstruction of the pressure in the algorithm and the way to be able to study several chemical species in 

the flames. 
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