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Abstract 
New method is presented for the point-in-polygon problem including Concave / Convex Cases. The 

method is based on the very basic definition of the polygon size (line/area/volume) depending on the 

spatial dimensions of the shape, which results in a very fast and accurate method when compared to 

existing techniques. The proposed method is tested against challenging problems and the results are 

compared with some of the existing techniques showing the superiority of the proposed method. This 

method is most efficient in Computational Fluid Mechanics applications. 

1. Introduction 

In numerical simulations of multi-phase flows using the level sets method, it is crucial to determine for each cell to 

determine the type of fluid exists. Hence, initially one shall solve the PIP problem for each node to create the signed 

distance function (SDF) as an initial condition to start the simulation. Another important application related to internal 

ballistics is capturing the burning surface of a solid fuel during the combustion process. Initially, the fuel grain has a 

known shape, then burning starts and the fuel grain shape burnt out. To trace the grain distortion a PIP shall be solved 

initially for proper capturing of the burning surface at later times by the level set technique [1]. 

In computational geometry, the point-in-polygon (PIP) problem seeks to decide if a given point in the plane lies outside, 

inside, or on the boundary of a polygon. It is one special case of point location problems. PIP is one of the fundamental 

problems involved in numerous applications starting from fluid mechanics and robotics to computer graphics and 

Geographical Information Systems [2].  

Applications of PIP in computer vision and length measurements are numerous [3], starting from vision-based 

measurement to measure the deformation in bodies [4] to motion planning [5]. Also this can be applied to Unmanned 

Aerial Vehicles (UAVs) and its autonomous landing process. The UAV has to detect if a certain position is suitable 

for landing and measure how far is it, then trace its borders by detecting the intersections of the surrounding obstacles, 

hence the UAV can decide whether it will land or not. This can be applied on landing decision for a helicopter [6] or 

a fixed wing aircraft over a conventional runway [7] or even a ship [8]. 

2. Previous Algorithms 

One of the primary methods to solve the PIP problem and the most popular method is the Ray Crossing (ray 

intersection) method which was derived by Nordbeck and Rystedt in 1967 [9]. Although it can deal with all kinds of 

polygons, it fails to detect if the investigated point lies on the polygon circumference or if the ray intersects a polygon 

vertex. It is executed in O(n) in time where n is the number of the polygon boundaries. Boundary cases are treated 

comparatively easily. Hence, this method is stable from numerical viewpoint [10]. 

An important upgrade to this algorithm was developed in 1994 [11] where a modified version was proposed to calculate 

the ray intersection method based on the vector representation and determinants. 

The second method is the Area Method [9]. Its basic idea is to connect the investigated point to all vertices and make 

triangles of them, then calculate the area of each triangle individually and add them. If the total area is the same as the 

initial polygon area then the point is inside the polygons. If the area increases, then the point is outside the polygon. 

On one hand, it is easy to calculate the areas of a polygon but on the other hand, it is not applicable for concave 

polygons because fictitious areas will be generated. 

In Swath method [12], the polygon is subdivided into swaths (trapezoids), which is evaluated in time O(n log 

n) [13], [14]. Then by using binary search, the trapezoid is located for the investigated point in time O(log n) then the 
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ray Intersecting method is performed on the polygon sides of the trapezoid. This method is preferred when many points 

are to be tested on the same polygon but the pre-processing is a drawback because of high computational effort. 

Sum of Angles method ([15]-[16]) is O(n) in time and used widely, but it suffers from two main disadvantages; it is 

slow because calculating the angles is computationally expensive, and it is sensitive to the truncation and rounding 

errors. Thus, it is less suitable for polygons with large number of vertices. 

Wedge method [14] can deal with convex polygons efficiently. In the first step the polygon is divided into n wedges 

using a random point inside the polygon, which is O(n) in time. Then by utilizing binary search, the wedge that includes 

the point of interest is found out in O(log n) in time. Finally, by using cross product operator, the investigated point 

relative location is found out in O(1) time. 

Skala [17], in 1996, suggested a method using dual representation. It requires pre-processing, which has O(n) in time. 

Then the restriction test needs constant time O(1). One drawback of this method is that it can only be utilized for 

convex polygons without holes. 

Huangand and Shih [18], in 1997, proposed Grid method which is appropriate for a raster-based cases. The polygon is 

depicted by a group of cells or pixels. The pixel colour at a certain position can be used to detect if the polygon includes 

the point of interest. This algorithm can be executed in O(n) time. The authors of [18] declared that this algorithm is 

not appropriate for vector-based representation of polygons. 

Hormann and Agathos [19] investigated in detail the basic concepts of Ray-Crossing and Angle Summation methods, 

and they found that they are mathematically alike. Thus they derived a new algorithm and optimized it thoroughly. It 

is fast but wrongly detect the point location with respect to a polygon in case that the polygon lies between two peaks 

(e.g. star-shaped polygon) and also to detect if the point lies on a vertex it must compare if the coordinates of the point 

matches one of the vertices coordinates. This procedure needs O(n) in time. 

R-tree search method is proposed by Zhou et al. [20] in 2013. This method is based on classifying each point in a tree-

like hierarchy then search for the point in this tree. The main disadvantage is that the polygon must be represented in 

the R-tree indices, which creates limitations on drawing arbitrary polygons. Another drawback is that it has to be 

evaluated to each single point in the domain, which means huge execution time especially if the domain contains many 

(thousands) points. 

Suwardi et al. [21], in 2015, proposed an algorithm to deal with a polygon based on the Boolean Overlay. This method 

is based on counting all points in the polygon and the point of interest, then classify them using colour coding. Finally, 

the output is obtained by visual detection of the colour of the output figure/map. Later, Khatun and Sharma [22] 

modified this algorithm to include the condition of point-on-boundary by adding one more If condition to check if the 

point lies on the body. This algorithm needs prepossessing to detect the shape and position of the point and the polygon, 

which can be extracted from the Geographic Information System (GIS), but this limits the application of this method. 

Using Ray Intersection method, Zhang, and Wang [23], in 2017, presented an algorithm to solve the PIP problem in 

3D spherical coordinates directly instead of transforming the spherical polygon into set of planar ones by projections 

which is time consuming process. 

3. The proposed algorithm: The Modified Polygon Method 

3.1 Basic Concept 

The concept of this method is evolved from the way of detection, if a point divides a line internally or externally; if 

the point divides the line internally, the total distance between the point and the line endings is the same as the line 

length. In case that the point divides the line externally, the total distance of the line passing from the line endings 

passing through the point will be longer than the initial length. 

By applying the same concept between an arbitrary point and a side of a polygon in 2D space, the area shall be 

calculated instead of the length. The line passing from the start point of the side to the end point passing through the 

point will have longer length except if the point lies over the line. Also, the side will be split into two; one from the 

start point to the point and from the point to the end point. This new deformation leads to a change in the polygon 

initial area. In case the point lies outside the polygon, the area of the modified polygon will increase and vice versa. In 

case that the point lies over the polygon circumference the area will be the same. Hence, by comparing the areas of the 

initial and the modified polygon, position of the point with respect to the polygon can be determined exactly regardless 

of the shape of the polygon or any other constraint. The area of the polygon can be calculated as: 
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Where xi and yi are the coordinates of the vertices. Points xn+1 and yn+1 are evaluated as x1 and y1. The absolute value is 

taken in order to cancel the effect of the direction around the polygon i.e. CW or CCW. The factor ½ can be omitted 

for faster calculations because only the difference in the area is considered for the decision, not the value itself.  

To determine which line is to be connected to the point, a simple search algorithm is used. The first step is to measure 

the distance between the point P and all the polygon vertices. The nearest vertex A is one of the two ends of the line 

that will be modified to include the point. The next step is to choose which line to be modified AB or AC. This choice 

is arbitrary except under one condition: if the line connecting between point and the other end (line PB) will intersect 

the other polygon side (line AC) as shown in Figures 1 and 2. Hence, an intersection check must be done. The time 

required for this process is O(n). The flow chart of the proposed algorithm is illustrated in Figure 3 and the pseudo 

code is in Appendix. 

 

 

Figure 1 intersection between lines PB and AC. 

 

 

Figure 2 no intersection between lines PB and AC. 

 

 

Figure 3 Flow chart of the proposed algorithm. 
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3.2 Comparison between the Proposed “Modified Polygon” and “Area” Methods 

To stand on the differences between the proposed “Modified Polygon” method and the area method [10], one shall 

compare between both. The Area method is based on connecting the investigated point to all the polygon sides to create 

triangles. Then to sum the areas of each triangle and compare the new and initial areas. If the point lies inside the shape, 

the total area will be the same, while the area will increase if the point lies outside. The main drawback is that if the 

shape is convex (e.g. star), when connecting the triangles, they may overlap and even intersect with the polygon itself, 

which generates fictitious and self-intersecting areas and the method will lose its functionality. 

In the Modified Polygon method, the point will be included in the polygon (i.e., the polygon will be deformed to pass 

through the point) and then the whole area of this modified polygon will be evaluated directly. By comparing the initial 

and modified areas, one of three possibilities will happen: 1) the new area is bigger which means that the point is 

outside the polygon, 2) the new area is smaller which means that the point is inside the polygon, and 3) the area is the 

same which means that the point is exactly over the polygon. The fictitious areas and the self-intersections can’t happen 

here because of the check that is done in step 4 in the flow chart (Figure 3). One more advantage for this algorithm 

over the Area Method and most of the other algorithms is that it can determine if the point lies over the polygon. 

 

4. Evaluation of the Proposed Method  

4.1 Comparison with Different Methods 

To evaluate the proposed method, challenging test cases are to be investigated by this method and several ones. The 

five-pointed star, as shown in Figure 4, is one of the most challenging problems and is introduced as a test case since 

it contains both convex and concave regions/angles. The comparison is made with three other methods which are a) 

Ray Intersection [10], b) Sum of Angles [16], and c) Algorithm number 6 of [19] as it is relatively fast. The calculation 

time is reported in Table 1. The average time is calculated from repeating the calculations 200 times and get the elapsed 

time for each trial. The reported calculations are obtained using MATLAB with an Intel I5 processor and 4 GB RAM. 

 

 

 

Figure 4 Generalized five-pointed star used for testing. 
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Table 1 results of computation time of the different methods 

Method Average time Minimum time 

Present method 3.69e-4 1.94e-4 

Ray Crossing 9.67e-4 6.11e-4 

Sum of Angles 34.0e-4 25.0e-4 

Algorithm 6 [19] 6.39e-4 3.10e-4 

 

As shown in Table 1, the Angle Summation method is the most expensive method, followed by the Ray Crossing and 

Algorithm 6, and the proposed algorithm is the fastest. By analysing the methodology of each algorithm, it can be 

inferred that in Ray Crossing; an intersection check is occurred between a ray passing through the point and cutting 

the polygon. This needs to calculate the intersection n times. For Algorithm 6, it is faster because it mainly depends on 

logic operators, but to check if the point is on the polygon it needs to check all the vertices coordinates which needs 

O(n) in time. The key behind the speed of our algorithm is that it calculates the areas using equation (1) two times 

which is O(n) in time also, but no more processing is needed except a single check for line intersection which is O(1). 

to examine if the point lies over the circumference of the polygon, the other methods uses logic operators in O(n) in 

time while the proposed method uses single logic operator. Besides, this algorithm is the most accurate because it 

depends on the very basic definition of the polygon size. 

4.2 Test Case with Complex Shape  

To stand over the strength points of this method, a more challenging test case shown in Figure 4 is examined, which is 

usually used in solid propellant fuel grains. In case that the point inside the shape, area of the shape in black will 

decrease. As shown in Figures 5-7, the algorithm detected correctly that the point lies inside, outside, or over the 

polygon respectively. Note that there is some irregularity in the shape because the coordinates were determined using 

digitizer software. It shall be noted that Algorithm 6 fails to detect the point position relative to the polygon in the 

second case of Figure 5 because the shape outer sides surround the point. 

 

 

Figure 5 Fuel grain with a point lies inside. 
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Figure 6 Fuel grain with a point lies outside. 

 

Figure 7 Fuel grain with a point lies over. 

 

4.3 Linearity of the Method and Elapsed Time 

In order to investigate the behaviour of the proposed method with the increase in the number of points, the method is 

tested on a square of N points, and the average and minimum time consumed are computed. The averaging is made 

over 2000 times and N varies from 100 to 10000. The results show this method has linear variation in time as shown 

in Figure 8. 
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Figure 8 Elapsed time versus number of points. 

4.4 Disadvantages 

The current version of the algorithm may have a drawback in case of slender bodies. Consider a triangle ABC with 

relatively large obtuse angle B and a point P needs to be investigated lies downside angle B and the opposite side AC 

as shown in Figure 9. Using the proposed algorithm, the point will be connected to vertex B as it is the nearest one. 

Then the algorithm will insert the investigated point between AB or BC but in this particular case both choices are 

wrong simply because the line BP is already intersecting the original shape. Hence the correct choice is to connect P 

through AC. This problem can appear in any polygon with slender dimensions. 

 

Figure 9 Line PB is self-intersecting with the initial shape. 

Although this is only hypothetical and does not exist in CFD since the polygon sides are discretized over the mesh 

cells' boundaries. This issue can be handled by modifying the algorithm by checking the intersection of the new 

lines. This will be considered in a future work.  

5. Conclusion 

New algorithm is presented for the point-in-polygon problem. The idea behind the proposed technique is simply 

explained by considering the one dimensional version of the algorithm: consider a point divides a line; if the point 

divides the line internally, the total distance between the point and the line endings is the line length. In case it lies 

outside the line then the total distance of the line passing from the line endings passing through the point will be longer 

than the initial length. The proposed algorithm has many advantages, the most important of which are (1) it deals with 

convex/concave polygons. (2) It is faster when compared with pre-existing techniques. (3) It is based on the basic 

definition of the polygon size (line/area/volume) depending on the spatial dimensions of the shape under consideration. 

(4) Time consumption of this algorithm varies linearly with the number of vertices of the polygon. The algorithm is 

tested against different shapes and the results are compared with some of the existing techniques with a great degree 

of success showing the superiority of the proposed algorithm. 
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Appendix 

Hereafter, the pseudo code of the Modified Polygon method is stated. 

 

{Calculation of the initial area using Equation (1)} 

initial_area=abs(1/2*sum(x.*y([2:end,1])-y.*x([2:end,1]))) 

{Looping over the polygon vertices to determine the nearest vertex} 

for i=1: length (x) 

    distance(i)=sqrt((check_point(1)-x(i))^2+(check_point(2)-y(i))^2) 

end 

[min_value pos_of_min_value]= minimum(distance) 

nearest_vertex=[x(pos_of_min_value) y(pos_of_min_value)] 

{Check the new side if it intersects with the other side} 

main_line=[x(pos_of_min_value) y(pos_of_min_value) x(pos_of_min_value+1) y(pos_of_min_value+1)] 

added_line=[x(pos_of_min_value-1) y(pos_of_min_value-1) check_point] 

out = is_intersecting(main_line,added_line) 

if out= FALSE  {connect the point to this side} 

     shape_x=[x(1:pos_of_min_value-1) check_point(1) x(pos_of_min_value:end)] 

     shape_y=[y(1:pos_of_min_value-1) check_point(2) y(pos_of_min_value:end)] 

else {connect the point to the other side} 

     shape_x=[x(1:pos_of_min_value) check_point(1) x(pos_of_min_value+1:end)] 

     shape_y=[y(1:pos_of_min_value) check_point(2) y(pos_of_min_value+1:end)] 

end 

{Calculation of the modified area using Equation (1)} 

modified_area=abs(1/2*sum(shape_x.*shape_y([2:end,1])-shape_y.*shape_x([2:end,1]))) 

{Check the change in the area} 

if modified_area= initial _area 

result=the point is located on the polygon 

elseif modified_area> initial _area 

result= the point is located outside the polygon  

else 

result= the point is located inside the polygon  

end 
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