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Abstract 
The problem of laminar-turbulent transition (LTT) in hypersonic boundary-layer flows is one of the 
main still unsolved problems of high-speed aerodynamics. LTT leads to a substantial increase of the 
surface heating and aerodynamic drag of hypersonic vehicles and, thereby as well as affects the 
efficiency of propulsion system and control surfaces.  In this paper we discuss our DNS of a 
transitional flow over a flat plate at the freestream Mach number 3 and high unit Reynolds numbers. 
Hybrid difference schemes allow increasing accuracy of numerical data in comparison with fully 
monotone difference schemes on the same numerical grid.  
 
 

1. Introduction 

The problem of laminar-turbulent transition (LTT) in hypersonic boundary-layer flows is one of the main still 
unsolved problems of high-speed aerodynamics. LTT leads to a substantial increase of the surface heating and 
aerodynamic drag of hypersonic vehicles and, thereby as well as affects the efficiency of propulsion system and 
control surfaces.  
A holistic computation of the all LTT stages is possible only using direct numerical simulations (DNS), where the 
full unsteady three-dimensional (3D) Navier–Stokes equations are solved without any restriction on the mean 
(unperturbed laminar) flow and disturbance amplitudes. In addition, as opposed to physical experiments, DNS gives 
full information about 3D disturbance field, which enables to identify and study in detail different LTT mechanisms. 
The modern methods of parallel computations and rapid developments of multi-processor supercomputers make it 
feasible to conduct such numerical experiments for hypersonic boundary layers for simple configurations such as a 
flat plate and a cone at zero angle of attack [1]. Further progress in computational hardware will allow us to handle 
more and more complicated and practical configurations. At the same time it is necessary to use difference schemes 
with minimum dissipative properties that don’t lead to numerical instability in order to increase effectiveness of 
numerical simulation. Such difference schemes can be hybrid schemes, which are an approximation of convective 
terms in Navier-Stokes equations with use of central difference schemes and monotone schemes with weights. This 
talk will demonstrate that use of hybrid difference schemes allow increasing accuracy of numerical data in 
comparison with fully monotone difference schemes on the same numerical grid.  
In particular, we discuss our DNS of a transitional flow over a flat plate at the freestream Mach number 3 and high 
unit Reynolds numbers. The flow parameters are the same as at [2]. It is shown that depending on different numerical 
schemes the behavior depended variables can evolved in quantitatively different ways. Future efforts related to the 
LTT simulation as well as other issues on practical applications of DNS will be also thoroughly addressed. 
 

2. The problem statement  

Scheme of the problem under consideration is shown in Figure 1 and Figure 2. Generator of unsteady disturbances is 
located on the plate surface in the vicinity of its sharp leading edge. In accordance with [2], development of the first 
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carried out using rather coarse grids (about three million nodes), satisfactory results are obtained. In comparison with 
case of monotone difference scheme, solution with use of hybrid scheme agrees better with data of other works, in 
which different numerical methods and finer grids with up to 80 million nodes are used.  
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