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Abstract
Owing to the lack of predictive analysis methods the evaluation of combustion stability characteristics by
means of full-scale testing is still the central element of the industrial development process for liquid rocket
propulsion systems. This publication reports on current tools and techniques used to assess the thermo-
acoustic stability behavior by means of dynamic combustion chamber pressure measurements. Special
emphasis is placed on the application of so-called infinite tube pressure probes as a means for attaining
high quality measurement data under the constrains of full-scale testing.

1. Introduction

Thermo-acoustic instabilities in liquid rocket propulsion systems may be characterized as an unsteady combustion
phenomenon which manifests as large amplitude pressure oscillations of relatively high frequency. Associated with the
latter are often massively increased heat transfer rates to the walls of the combustion chamber and severe mechanical
vibrations, both capable of causing catastrophic failure of the entire propulsion system. A significant number of liquid
rocket development programs have been affected by this problem where the most famous example is certainly the F1
engine for the first stage of the Apollo Saturn V vehicle. The development involved more than 3200 full-scale tests
where most of these tests where carried out in order to solve the problems arising from combustion instability.5 The
failure of the second Ariane I flight in May 1980 is probably the most disastrous case of combustion instability in the
European rocket propulsion history. Here, one of the first stage SEP Viking 5 motors produced spontaneous instabilities
after lift-off which finally resulted in a complete failure of the entire mission. The consequence of this incident was an
expensive re-design and certification program which grounded the vehicle for more than one year.9

Since the early studies of Rayleigh17 it is well known that thermo-acoustic instabilities result from an interaction
between heat-release fluctuations (originating from the combustion process) and the acoustics of the confinement, i.e.
the combustion chamber. Mathematically speaking, the criterion under which an instability may arise is given by the
following inequality:*

INSTABILITY ⇔
γ − 1
%c2

$
Ω

〈p′q̇′〉dV −
"

∂Ω

〈niIi〉dA > 0 (1)

where 〈·〉 is the operator of local temporal average and p′ and q̇′ denote the instantaneous pressure and heat release
fluctuation inside the combustion chamber domain Ω, respectively. Moreover, γ is the ratio of specific heats, % the
mean density, c the sonic velocity and ni the normal vector to the system boundary ∂Ω. Ii represents the instantaneous
acoustic energy flux over the latter. The volume integral represents the coupling between heat-release and acoustic
pressure fluctuations, the surface integral the loss of acoustic energy over the system boundaries. An instability will
therefore only establish if the total driving potential of the heat release exceeds the overall acoustic energy loss.

Despite extensive research for several decades and even though the basic principles behind thermo-acoustic in-
stabilities are mainly understood, a reliable prediction is not given up to the present day. The reason for this lack
of analytical capabilities is the complexity of the physical mechanisms behind the heat-release fluctuations. Current
research activities are aiming on the application of unsteady CFD simulations.11, 23 Nevertheless, simulations of that
kind are still subject to a considerable amount of uncertainty. In addition to that, the computational cost of transient

*By neglecting the mean flow impact and viscous effects.
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CFD based stability analyses is often excessive and difficult to apply within the industrial development process. Be-
sides the demonstration of stable operation within the scope of an engine qualification process the evaluation of the
thermo-acoustic stability characteristics by means of full-scale testing still constitutes a major element of the industrial
development process. The necessity of performing the tests at full-scale level is based upon the fact that the acoustic
modes potentially interacting with the combustion process directly depend on the scale of the hardware, i.e. the thermo-
acoustic conditions encountered under full-scale level cannot be investigated by means of sub-scale configurations.

The objective of the next chapters is to discuss some of the tools and techniques used to evaluate combustion
stability characteristics experimentally. However, it is beyond the scope of this publication to cover all the aspects and
details concerning combustion stability testing. Instead, the emphasis is placed on the measurement of the dynamic
pressure inside a full-scale combustion chamber as this approach is the most accepted and widely used method for
the detection and evaluation of unstable combustion in liquid rocket propulsion systems. In the course of this, the
application of so-called infinite tube pressure probes is discussed in greater detail. They provide enhanced flexibility
under the constrains of full-scale testing and eliminate several shortcomings of conventional measurement techniques.
In the second part of the paper the reduction and analysis of the acquired test data is discussed. This includes a review
of common parameters for quantifying the thermo-acoustic stability behavior.

2. Dynamic Pressure Measurement in Full-Scale Propulsion Systems

As already mentioned in the introduction, dynamic pressure measurements are the primary method for the detection of
combustion instabilities and the characterization of the stability behavior. Therefore, a more detailed description of the
instrumentation for this kind of measurement is given in the following.

2.1 Transducer Positioning

The location and mounting of dynamic pressure transducers within a combustion chamber is an important consideration
in diagnosing thermo-acoustic instability modes. All available literature agrees that multiple dynamic pressure trans-
ducers in the combustion chamber are required in order to accurately identify the character and location of particular
instability modes.2, 7, 10

Two transducers in the combustion chamber may be considered as an absolute minimum, even for flight con-
figurations. They should be mounted at an angle of approx. 135◦ close to the injector face. For engine development
three transducers at 0◦, 135◦ and 270◦ are usually a minimum requirement and the 0◦ transducer should be completed
with two additional transducers downstream in the combustion chamber. For baffled configurations, the downstream
transducers are of increased importance. The instrumentation should be completed with several transducers in the feed
system cavities i.e. domes, manifolds etc.

Figure 1: Positioning of dynamic pressure transducers for instability mode identification.

2.2 Transducer Transmission Behavior

To meet the frequency response requirements, flush mounted transducers are recommended in general. Flush mounted
means that the pressure sensing surface of the transducer is positioned at the same level as the inner surface of the
measured domain, e.g. the combustion chamber. If small back-steps or back-volumes are formed, these need to be
examined for possible resonances. If resonances in the frequency range of interest are given, the mounting situation
needs to be changed or countermeasures as described below should be established.
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In many situations however it may be impossible to install flush-mounted transducers through the walls of the
chamber (e.g. in case of regeneratively cooled chambers) or through the injector head. In these cases a small capillary
is often required which connects the transducer to the measurement location. This setup however is associated with
a significant reduction of the uniformity of the frequency response due to unfavorable acoustic resonances forming
within the capillary. To eliminate the latter and to extend the frequency response to the required range, the application
of an infinite tube measurement system is recommended.

Figure 2 illustrates a typical infinite tube probe mounted at the injection head of a liquid rocket propulsion system.
The central element of the measurement system is a dynamic pressure transducer (1) connected to a T-junction (2). At
the upstream end of the T-junction, a capillary tube (3) is attached. The latter must be long enough so that acoustic
waves are sufficiently dissipated and the formation of standing waves (resonances) within the overall measurement
system is inhibited. At the downstream end, the setup is connected to the pressure measurement location, e.g. the
injector face of a liquid rocket injector head, by means of a relatively short tap-off capillary (4). In order to keep
reacting, corrosive and undefined media out of the probe, the tubes are usually purged with a steady flow of inert gas
which is injected at the upstream end of the long capillary tube.

Figure 2: Infinite tube probe mounted at an injector head.

Infinite tube measurement systems are proven and well known within the gas turbine industry and community.8, 21

However there are almost no descriptions of infinite tubes utilized for rocket propulsion applications. On notable
exception within this context is the application of infinite tube pressure probes within the NERVA (nuclear rocket)
program during the 1960’s.22

3. Performance Analysis of an Infinite Tube System

The transmission performance of an infinite tube probe is usually highly sensitive with respect to geometrical imper-
fections like small cross sectional variations and gaps or operational constrains like additional purge orifices. To ensure
a sufficient measurement data quality it is therefore suggested to evaluate the performance prior to its application. In
the following section an acoustic network model will be presented which allows to evaluate the impact of different
operational and geometrical parameters on the performance of a probe.

3.1 Modeling Approach

An infinite tube probe is characterized by a large ratio between length and diameter of the acoustic propagation ducts.
For the frequency range of interest, e.g. for oscillation frequencies < 10kHz, the cut-on frequency for non-longitudinal
modes is not reached. This implies that the acoustic perturbations propagating within the ducts are planar waves. In
this case, the acoustic performance can be analyzed by means of a so called network approach.15, 16 Here the system is
divided into a variety of different acoustic elements, where each element represents the acoustic behavior of elementary

3

DOI: 10.13009/EUCASS2019-592



EVALUATION OF THERMO-ACOUSTIC STABILITY

geometric components, e.g. a duct of constant cross section. Acoustic waves can enter and leave an acoustic element
at the interfaces to other acoustic elements. In the frequency domain the acoustic state at these interfaces can either
be described by the complex-valued acoustic pressure p̂ and the velocity û or by the corresponding complex-valued
Riemann invariants f and g.16 The Riemann invariants or wave characteristics are related to p̂ and û by the following
relations:

p̂
%c

= f + g , (2a)

û = f − g , (2b)

where f denotes the Riemann invariant propagating in positive coordinate direction. Conversely g denotes the Riemann
invariant propagating in negative coordinate direction. Moreover, c is the speed of sound and % the mean density of the
fluid. In the following the basic acoustic elements required within the acoustic analysis of an infinite tube measurement
system will be discussed.

3.1.1 Duct with Losses

Within a simple duct element, acoustic waves can enter and leave the system from two sides (two-port element). The
acoustic behavior is governed by two linear equations relating the incoming and outgoing waves. Neglecting the
convective influence of a possible mean flow these equations in terms of the Riemann invariants can be written as:

fd = exp (−ikL) fu , (3a)
gd = exp (+ikL) gu , (3b)

where the index ( )u denotes the Riemann invariants at the upstream port and the index ( )d the corresponding quantities
at the downstream port. L characterizes the overall or effective length of the duct. Moreover, i =

√
−1 is the imaginary

unit and k = ωΓ/c is the wavenumber, where ω is the angular frequency of the acoustic oscillations. Note that k
is a complex-valued quantity. If the wavenumber would be real-valued, i.e. k = ω/c, only a phase change between
the incoming waves and the outgoing waves would appear. In case of a complex-valued wavenumber, a change in
amplitude will result in addition to the phase shift. The propagation coefficient Γ incorporates the dissipative thermo-
viscous impact of the acoustic boundary layer at the duct walls. For this parameter, various modeling approaches are
available within the literature. Table 1 gives on overview on some analytical expressions for the propagation coefficient.
Note that all expressions depend solely on three parameters, i.e. Γ = Γ(s, σ, γ), where

s =
d
2

√
%ω

µ
(4)

denotes the so called shear wave number,

σ =

√
µcp

κ
(5)

is the square root of the Prandtl number and γ = cp/cv represents the ratio of the specific heats. Within above ex-
pressions, d specifies the inner diameter of the duct. Moreover, the dynamic viscosity is denoted by µ and the thermal
conductivity by κ.

3.1.2 Network Junctions with Area Change

Acoustic junctions are characterized by one or more incoming connections and one or more outgoing connections. In
the scope of this analysis, acoustic junctions are treated as compact, which implies that the effective geometric length
of this element is small with respect to the acoustic wavelength. Moreover, the convective impact of a possible mean
flow as well as associated acoustic losses are neglected. To fully describe the acoustic behavior of acoustic multi-ports,
a system of N equations is required, where N equals the total number of in- and outgoing connections. Assuming the
continuity of the acoustic pressure and the conservation of mass, the required governing equations can be written in
terms of the Riemann invariants as follows:

N∑
j=1

A j( f j − g j) = 0 , (6a)

f j + g j − f j+1 − g j+1 = 0 for j = 1...N − 1 , (6b)

with A j denoting the the cross-sectional area at connection port j.
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Author Year Expression

Kirchhoff13 1868 Γ = 1 +

(
1 − i
√

2

) (
γ + σ − 1

σs

)
Rayleigh18 1896 Γ = 2(1 − i)

√
γ

s2

Ronneberger20 1975 Γ = 1 +

(
1 − i
√

2

) (
γ + σ − 1

σs

)
−

i
s2

(
1 +

γ − 1
σ
−
γ2 − γ

2σ2

)

Zwikker and Kosten24 1949 Γ̂ =

√
−

J0(s
√
−i)

J2(s
√
−i)

√
γ + (γ − 1)

J2(sσ
√
−i)

J0(sσ
√
−i)

Table 1: Overview on common analytical expressions for the propagation coefficient Γ. Jm is the m-th order Bessel
function of the first kind.

3.1.3 Additional Purge Orifice

According to Figure 2, the tap-off capillary within the shown injector head includes a small purge orifice. Note that this
orifice is not related with the infinite tube design, but has been part of the original dynamic pressure measurement con-
cept. Neglecting compressibility and inertial effects, the following linearized relation between pressure perturbations
upstream of the orifice p̂, the unsteady flow velocity within the vena-contracta of the orifice ûvc and the mean pressure
difference across the orifice ∆p can be derived:

p̂
ûvc

=
√

2%∆p (7)

This expression together with the conservation of mass and the continuity of the dynamic pressure across the acoustic
element provides the basis for the following governing equations in terms of the Riemann invariants:

fu + gu − fd − gd = 0 , (8a)
(1 − K) fu − (1 + K)gu − fd + gd = 0 , (8b)

with

K =
CcAori

Ad

 %c√
2%∆p

 (9)

where Cc ≈ 0.64 is the coefficient of flow contraction and Aori and Ad denote the cross sectional area of the orifice and
the duct, respectively.

3.1.4 Model Assembly and Method of Solution

According to the acoustic network approach, the infinite tube probe shown in Figure 2 is decomposed into a system of
acoustic elements. Figure 3 shows a sketch of the basic network structure.

The acoustic properties of the reflection elements are expressed in terms of a so called reflection coefficient r
which relates the amplitude of the reflected wave to the amplitude of the incoming wave. For the analysis perfect
frequency independent reflection behavior is assumed, i.e.: r1 = f1/g1 = 1 and r2 = g6/ f6 = 1. Note that this is
actually a conservative assumption. With perfect reflection, the loss of acoustic energy will be minimized leading to
an overprediction of potential acoustic resonances inside the infinite tube system. The network model is acoustically
excited at the measurement location. Here, a constant velocity boundary condition f10 − g10 = û10 is imposed. It
should be mentioned that the specific type of excitation (pressure or velocity) is arbitrary. Moreover the amplitude of
the excitation is arbitrary, too, due to the fact that the model is based on linear acoustics.

The network model as shown within Figure 3 includes a total number of N = 2M = 20 unknown Riemann
invariants. For the determination of these unknowns the governing equations of each acoustic element within the
network together with the specified boundary conditions can be combined into a single matrix equation for the whole
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Figure 3: Acoustic network structure of the infinite tube probe shown in Figure 2

system: 
a11(ω) · · · a1N(ω)
...

...
aM1(ω) · · · aMN(ω)




f1
g1
...

fM

gM


=


b1
...

bM

 (10)

where ai j(ω) are the frequency dependent components of the system matrix, [ f1, g1 . . . fM , gM]T is the vector of
unknown Riemann invariants and b j the RHS of the linear system of equations. In the course of this analysis, the
matrix equation is assembled and solved within the MATLAB®environment.

The performance of a dynamic pressure measurement system is usually expressed in terms of the transfer func-
tion H(ω) = p̂T / p̂c which relates the pressure at the measurement location p̂c ∼ f10 + g10 to the pressure at the
transducer p̂T ∼ f6 + g6. To extract the transfer function from the network model the coefficients of the system matrix
ai j are evaluated for a given frequency range of interest and the corresponding matrix equations are solved for the
unknown Riemann invariants.

3.2 Model Results

Figure 4 illustrates the calculated transfer behavior of the probe shown in Figure 2. The results have been obtained
with the thermo-viscous dissipation model of Zwikker and Kosten24 and are depicted for two different pressure levels:
ambient and 100bar. In both cases the magnitude response of the dynamic pressure probe |H(ω)| is largely flat up to
frequencies of approximately 1kHz. For frequencies exceeding the latter limit, an increasing oscillatory behavior can
be noticed in addition to an overall decrease of the magnitude level. The oscillations in terms of the magnitude response
can be traced back to acoustic resonances inside the probe owing to acoustic reflections at geometrical imperfections,
i.e. at the branching purge orifice and the transducer attachment passage. Note that the amplitude of the resonances
is a clear function of the pressure level. In general increased pressure results in lower kinematic viscosity ν = µ/%
and as a consequence in higher shear wave numbers s ∼

√
ω/ν. This finally leads to a significant reduction of the

thermo-viscous dissipation which has a direct impact on the height of the resonance peaks. The phase angle between
the pressure at the measurement location pc and the pressure at the transducer pT increases continuously and becomes
significant for frequencies at which the tap-off section represents multiple wavelengths. The variation of the phase
angle is almost linear indicating a constant time delay

τ = −
d arg(H)

dω
≈

L4 + L5

c
(11)

between the measurement location and the transducer. Contrary to the magnitude, no visual impact of the absolute
pressure level on the phase response of probe is observed. Besides geometry, the phase angle is primarily influenced
by the local speed of sound in the purge fluid, where the latter is largely independent of pressure.

To assess the quality of the model, acoustic measurements at ambient conditions have been carried out. In the
course of this, the infinite tube probe has been excited in a frequency range between 1.5kHz and 4.5kHz by means
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of an acoustic compression driver. The frequency response was then obtained by correlating the signal of the probe
transducer with a reference measurement at the location of the excitation source. According to Figure 4, the predicted
characteristics agree well with the obtained measurement data.
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Figure 4: Calculated transfer behavior and comparison with acoustic measurement data

3.3 Full Scale Experience

In the previous section, it was found that the acoustic network approach is capable of accurately predicting the trans-
mission performance of an infinite tube probe. In the following, the performance under hot and full-scale conditions
will be discussed. Figure 5 illustrates the dynamic pressure spectra for three different measurement setups in a LRE
full-scale application. The spectra are presented in terms of a normalized frequency Ω which allows to better identify
the dominant acoustic chamber modes within the data:

Ω =
ωrc

c
(12)

where rc denotes the radius of the combustion chamber and c is the characteristic speed of sound of the hot combustion
product. With this definition, the transverse acoustic chamber modes are indicated by the roots of the m-th order Bessel
function derivative Ωmn, i.e. the first two tangential chamber modes T1 and T2 are characterized by a normalized
theoretical resonance frequency of Ω10 = 1.841 and Ω20 = 3.054, respectively.

The spectrum shown in Figure 5a has been measured inside a capacitively cooled combustion chamber configu-
ration by means of a flush mounted dynamic pressure transducer. It is composed of at least three characteristic regions
with increased spectral amplitudes. By comparing the measured spectrum with the analytical transverse mode frequen-
cies at least two of these regions can be identified as resonance peaks of the first and second tangential combustion
chamber mode. The third region lies below the cut-on frequency of the transverse modes (Ω < 1.841). Numerical
simulations however have shown that this region is likely the spectral contribution of the first and second longitudinal
combustion chamber mode.

The data of Figure 5b corresponds to a regeneratively cooled version of the previous combustion chamber. Due to
geometrical constrains an integration of flush mounted transducers into the design was not possible. Instead, an infinite
tube probe has been utilized in order to accurately measure the dynamic content of the combustion chamber pressure.
Compared to the spectrum of the flush mounted transducer only minor differences can be noticed. The latter are mainly
visible in terms of the local amplitude levels. The overall picture of the spectrum is however fully preserved. It should
also be mentioned that the operating conditions of the combustion chamber are not fully identical in both cases, i.e. the
differences are not necessarily introduced by the infinite tube probe but may also result from slightly different operating
condition.

Figure 5c finally illustrates the consequences of connecting the transducer to the combustion chamber by means
of a capillary without an infinite tube. Due to the highly reflecting termination, an acoustic resonator is formed whose
resonance peaks interfere with the actual combustion chamber spectrum. In many cases, the artificial resonance peaks
dominate the overall spectrum making the data useless for further stability analyses. This clearly demonstrates the
necessity of advanced measurement techniques like infinite tube probes.
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Figure 5: Power spectrum density (PSD) of the dynamic chamber pressure for three different measurement setups:
flush mounted transducer a), infinite tube probe b), tap-off capillary without infinite tube c).

4. Evaluation of Stability

The knowledge of accurate dynamic pressure data facilitates a conclusive evaluation of the thermo-acoustic stability
characteristics. In the following sections an overview on common methods for stability assessment and test data
evaluation is given. In the course of this, important quantities for the characterization and interpretation of hot-firing
test data are presented and discussed. Please note however, that most of the subsequent information is related to the
linear or spontaneous stability only.

4.1 Quantification of Thermo-acoustic Stability

4.1.1 Root-Mean-Square

The root-mean-square (RMS) value of dynamic pressure is probably the most common measure for the quantification
of engine stability. It is common practice to examine this quantity in order to distinguish between stable and unstable
engine operation. In general, root-mean-square can be formulated both in the time and frequency domain. In the time
domain the RMS of an unsteady quantity p′ = p − p̄, where p̄ is the temporal mean of the instantaneous signal p, is
defined as follows:

p′RMS =

√
1
N

∑t2

ti=t1
p′(ti)2 (13)

where N denotes the total number of samples within the evaluation window. Note that the unsteady component p′

is usually high- or bandpass filtered in order to quantify the contribution of the thermo-acoustic fluctuation on the
overall combustion roughness. Thereby, the cut-on frequency of the filter is selected to be slightly below the resonance
frequency of the lowest acoustic chamber mode, usually the first longitudinal mode. As an alternative to the time
domain, the root-mean-square may also be determined from the power spectrum density PSD of the signal by means
of the following relation:

p′RMS ( f1, f2) =

√
∆ f

∑ f2

fi= f1
PSD( fi) (14)

where ∆ f is the spectral resolution and f1 and f2 denote the lower and upper frequency limit for the root-mean-square
determination. Note that both the time and frequency domain method are equivalent with respect to the final result.
The primary advantage of the frequency domain based method is the avoidance of the pre-filter step.
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4.1.2 Spectral Entropy

Spectral entropy is a measure for the distribution of a signal’s frequency components and provides a way to quantify
how complex, organized or noise-like a signal is. A high spectral entropy level indicates that the spectrum has a
similar amount of power in all frequency bands. Conversely a low spectral entropy indicates that the signal power
is concentrated in a relatively small number of frequency bands. In addition to the root-mean-square amplitude of
the dynamic chamber pressure, the spectral entropy may be utilized as another indicator for unstable combustion
chamber operation. The normalized form of the spectral entropy NSE (approaching 1.0 for Gaussian white noise) in
the frequency range between f1 and f2 is calculated as follows:

NSE( f1, f2) = −

∑ f2
fi= f1

P( fi) ln P( fi)

ln N
(15)

where the "probability" P( fi) with
∑

fi P( fi) = 1 is given as:

P( fi) =
PSD( fi)∑ f2

fi= f1
PSD( fi)

. (16)

Spectral entropy may also be applied in order to distinguish between unstable and rough combustion. Thus rough
combustion is characterized by increased dynamic pressure fluctuations in combination with spectral entropy levels
exceeding the values of unstable combustion.
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Figure 6: Typical root-mean-square dynamic pressure and normalized spectral entropy levels encountered during stable
and unstable combustion chamber operation.

4.1.3 Characteristic Damping

The rate at which acoustic disturbances are damped in a stable combustion chamber has been proposed as a potential
measure for determining the proximity to the spontaneous stability limit.7, 10, 14 Considering a disturbance of sufficiently
low amplitude such that nonlinear effects are negligible the response of the chamber pressure at a fixed location to some
perturbation can be formulated as a sum of expressions of the form

p′(t) = A exp(−αt) cos(ωrt + φ) (17)

where p′(t) denotes the contribution of a particular resonance mode with angular resonance frequency ωr to the overall
chamber pressure response. The temporal evolution of the disturbance amplitude is defined by the damping coefficient
α which is a lumped parameter including both potential excitation effects due to the combustion process as well as the
inherent acoustic damping of the system. The damping coefficient α is a dimensional quantity with units s−1 expressing
the absolute speed of the exponential amplitude decay. To evaluate the significance of the damping, the latter has to be
put into relation with the characteristic time scale of the oscillation. This finally leads to characteristic non-dimensional
quantities commonly used within the assessment of LRE stability.
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Quality Factor The quality factor Q is a non-dimensional damping measure which is widely used within the context
of oscillators and resonators. It is usually defined in the frequency domain as the ratio between the resonance angular
frequency of a particular mode ωr and the corresponding full width at half-maximum bandwidth ∆ω3dB. Moreover it
can be expressed as π-times the ratio between the oscillation frequency and the damping coefficient, i.e.:

Q =
ωr

∆ω3dB
=
π fr
α

. (18)

Higher Q values indicate a lower rate of relative energy loss. With respect to thermo-acoustic stability this means that
a system would operate closer to the stability limit. Conversely low values of Q correspond with increased rates of
energy loss indicating higher stability margins with respect to linear or spontaneous instabilities. For Q = 0.5 the
critical amount of damping is reached. In this case as well as for Q < 0.5 the dynamic system would no longer be able
to oscillate (critically or overdamped state).

Oscillation Decrement The oscillation decrement δT is another non-dimensional stability or damping measure
which is often found in the Russian literature on thermo-acoustic stability of LRE.7 It is based on the same princi-
ples as the quality factor and as a consequence the oscillation decrement can be converted into the quality factor and
vice versa:

δT =
π∆ω3dB

ωr
=
π

Q
=
α

fr
. (19)

In case of the oscillation decrement, higher values of δT are linked with an increased amount of stability margin
whereas an operation towards the stability limit would be indicated by values of δT approaching zero.

4.2 Determination of the Characteristic Damping from Natural Disturbances

4.2.1 Half-Power Bandwidth Method and Lorentzian Fitting

A common method for the determination of the characteristic damping during steady-state engine operation is to use
the ambient combustion noise as a natural disturbance source. It is assumed that the spectral content of the natural
excitation source is of larger bandwidth than the response characteristics of the combustion chamber in the vicinity of
the resonance frequencies being studied. Under this assumption the so-called half-power bandwidth method can be
applied.10 Here, the damping is determined by directly measuring ωr and ∆ω3dB of a particular resonance peak in the
amplitude spectrum of the dynamic chamber pressure (Figure 7).

Since the half-power bandwidth method relies only on three points, significant errors can be introduced if the re-
sponse data has only a very limited frequency resolution and/or the analyzed peak is superimposed with other resonance
modes. In this case, it is recommended to fit an analytical response function to the measurement data. The response
function p̂(ω) that corresponds with an exponentially damped simple harmonic oscillation is a so-called Lorentzian
curve of the form:

p̂(ω)
p̂(ω = ωr)

=
α2

α2 + (ωr − ω)2 =
γ2

γ2 + ( fr − f )2 (20)

where γ = α/2π and p̂(ω = ωr) = | p̂|max denotes the response maximum. By fitting above profile to the measured
amplitude spectrum of the dynamic chamber pressure, both the damping coefficient α and the corresponding resonance
frequency fr are determined with an accuracy that is usually superior to the simple half-power bandwidth method.

4.2.2 Parametric Modelling

This approach is based on the assumption that the temporal evolution of the dynamic chamber pressure can be described
by means of a parametric time series model such as the auto-regressive model (AR).5, 12 Mathematically, an AR model
of order p can be expressed as:

x[n] =

p∑
k=1

ak x[n − k] + e[n] (21)

where x[n] is the value of the time series at sample point n, ak are the real valued model coefficients and e[n] represents
a white noise error term which is independent of the past samples. An AR model may also be considered as a digital
infinite impulse response filter (IIR) whose response function in the z-domain is given as:

H(z) =
1

1 −
∑p

k=1 akz−k
(22)
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Figure 7: Characteristic damping evaluation of a spectral peak by means of the bandwidth method.

The complex roots z×i of the response function correspond with the resonance peaks of the signal spectrum. The
resonance frequencies ωi = Im(s×i ) and the associated damping rates αi = Re(s×i ) are obtained by transforming the
roots from the discrete z domain to the continuous Laplace domain, i.e.

s×i =
ln(z×i )

∆t
(23)

where ∆t is the constant sampling time. To estimate the auto-regressive model coefficients ak from the input time series,
a variety of different algorithms have been proposed such as Yule-Walker, least-squares and Burg-type estimators. Care
shall be taken in case of Yule-Walker as this method has shown to be erroneous for small data segments.6 An important
aspect of the parametric modelling approach is the correct choise of the model order p. The order may be chosen
according to the total number of acoustic resonance peaks wihin the frequency range of the input signal. However, it is
often more appropriate to apply one of the various order selection criteria like the Akaike Information Criterion (AIC),
Final Prediction Error (FPE) or the Minimum Description Length (MDL).3, 4, 19

Figure 8 illustrates an example for modal characteristics which have been estimated from the dynamic pressure
signal of a full-scale hardware by means of parametric modeling. The results are shown in terms of a scatter plot
where each data point is related with the characteristics during an evaluation window of 100ms. Note that the points
are clustered around three regions where the regions represent the linear stability characteristics of the first and second
tangential thrust chamber mode as well as a feed-system-coupled oscillation, respectively.

4.3 Common Criteria for Sustained Stability

Due to the large number of factors affecting the stability characteristics of liquid rocket propulsion systems it is of-
ten impossible to define exact quantitative criteria which guarantee thermo-acoustic stability under all circumstances.
Several examples are known where sudden instabilities have been encountered despite extensive testing with stable op-
eration prior to the incident.10 Nevertheless, experience gained within numerous thrust chamber firings allows to define
at least some order of magnitude criteria. If these criteria are fulfilled a high probability for sustained thermo-acoustic
stability can be expected.

At least two order of magnitude criteria have been published within the common literature on LRE combustion
stability. According to Dranovsky,7 combustion chambers with stable operating processes exhibit oscillation decre-
ments in the range of

δT ≈ 0.1 . . . 0.3 . (24)
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Figure 8: Scattering of linear damping rates and associated frequencies during a long duration full-scale test (color
corresponds with data point density). The modal damping rates have been estimated from the dynamic chamber
pressure signal by means of parametric modeling.

Another criterion has been published within the US guidelines on combustion stability specification and verification
procedures.1, 2 Contrary to Dranovsky7 this criterion is based on a maximum allowable damping time

tD ≤ 1.25s

√
1Hz

fr
. (25)

For potentially unstable frequencies in the range of fr ≈ 2 . . . 10kHz and by assuming that tD represents the elapsed
time required for a disturbance to decay to 10% of its initial amplitude, limiting oscillation decremens in the range
of δT ≥ 0.02 . . . 0.04 would be attained. Note that this limit significantly exceed the recommendation of Dranovsky,
i.e. the criterion stated by CPIA1, 2 would be substantially weaker. It should be mentioned that the US criterion is
based on experience for the allowable time, with an acceptable margin, that an oscillation can be present without the
engine encountering damage. Furthermore the criterion has been formulated for finite disturbances (dynamic stability)
whereas the Dranovsky recommendation is only given for "soft" excitation.7

5. Summary and Conclusions

A short overview on current methods for assessing the thermo-acoustic stability characteristics of liquid rocket propul-
sion systems has been given. Prerequisite for the successful application of these methods is an accurate measurement of
the dynamic pressure fluctuations inside the combustion chamber. It has been shown that infinite tube pressure probes
are capable of providing the necessary data under the constrains of of full-scale testing.
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