
8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS)

DOI: ADD DOINUMBER HERE

Travelling wave mathematical analysis and efficient
numerical resolution for a realistic model of solid

propellant combustion

Laurent François1,2, Joël Dupays1, Dmitry Davidenko1, Marc Massot2,
1 ONERA, DMPE, 6 Chemin de la Vauve aux Granges, 91120 Palaiseau, France

2 CMAP, CNRS, Ecole polytechnique, Institut Polytechnique de Paris,
Route de Saclay, 91128 Palaiseau Cedex, France

{laurent.francois, joel.dupays, dmitry.davidenko}@onera.fr · marc.massot@polytechnique.edu

Abstract
We investigate a model of solid propellant combustion involving surface pyrolysis coupled to finite
activation energy gas phase combustion at unit Lewis number. Existence and uniqueness of a travel-
ling wave solution are established by extending dynamical system tools classically used for premixed
flames, dealing with the additional difficulty arising from the surface regression and pyrolysis. An
efficient shooting method allows to solve the problem in phase space without resorting to space dis-
cretization nor fixed-point Newton iterations. The results are compared to solutions from a CFD code
developed at ONERA, assessing the efficiency and potential of the method.

1. Introduction

Solid propellant combustion is a key element in rocket propulsion and has been extensively studied since the 1950s
including at ONERA [1, 2, 3, 4]. This particular problem involves a solid phase and a gas phase, separated by the
interface (surface of the solid). The solid is heated up by thermal conduction and radiation from the gas phase. At
its surface, the solid propellant is decomposed through a pyrolysis process, and the resulting pyrolysis products
are gasified and injected in the gas phase. Both these phenomena will be gathered under the name “pyrolysis”
for simplicity. The interface regresses and the injected species react and form a flame, which heats back the solid
and allows for a sustained combustion. It is essential to understand the physics of this phenomenon to allow for
clever combustion chamber designs and efficient solid rocket motors. A key element is the regression speed of the
propellant’s surface, and its variations depending on the combustion chamber conditions.

Many models with variable level of detail have been developed, with essentially two levels of description.
On the one side, there exists analytical models, which directly give a formula for the steady regression speed and
allow a qualitative description and global understanding of the physics at the cost of some restrictive assumptions.
On the other side, one can find detailed models, that require high-fidelity numerical resolution with spatial and
temporal discretizations (CFD), giving a very detailed representation of the physics, both for quasi-steady and
unsteady evolutions. The main analytical models in steady regime are the Denison-Baum-Williams (DBW) model
[5], the Beckstead-Derr-Price (BDP) model [6] and the Ward-Son-Brewster (WSB) model [7]. They mainly give
the regression speed and the surface temperature, using a one-dimensional approach. They usually assume the
pyrolysis is concentrated at its surface and the gas phase only contains two species: one reactant resulting from
the pyrolysis, and one product. There is only one global reaction which transforms the reactant into the product.
The DBW and BDP models assume that the activation energy Ea of the gas phase reaction is very high. This
allows the splitting of the gas phase into two separate zones: the convection-diffusion zone and the reaction-
diffusion zone, starting at the flame stand-off distance x f (model-specific). The equations can be solved in each
zone separately and linked at the interface between the two, yielding an analytical expression for the burning mass
flow rate Ûm. On the opposite, the WSB model assumes that Ea is zero, which often leads to better agreement
with experimental results. Assuming a unitary Lewis number, several equations can be derived, which require
simple fixed-point iterations to determine the regression speed. All these models give analytical relations between
the propellant physical characteristics and the physical state of the propellant and gas flow (surface temperature,
regression speed). They give a global understanding of the phenomenon. In all these models, the equations
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describing the physics of both phases can only be solved for a unique value of the regression speed c, called the
“eigenvalue” of the problem.

On the other end of the spectrum, numerical methods solving a comprehensive set of equations, e.g. [8],
use much less restrictive assumptions, but they are computationally expensive and may encounter difficulties
converging, potentially requiring transient evolutions. Their results are case-specific and do not allow for generic
relations to be established between the different parameters.

It would therefore be interesting to have an easy-to-use and yet precise analytical or semi-analytical model
(i.e. requiring numerical iterations), that would not require as many assumptions as the existing analytical mod-
els and thus remain closer to the physics. Such a model does already exist for travelling combustion wave in
laminar premixed flames and has been studied for quite some time, for example in [9]. This model is based on
a phase-plane representation of a simplified combustion problem with unitary Lewis number, two species and a
single reaction. The combustion wave speed is shown to be a key parameter for which only one value allows the
simplified problem to be solved. This value can be determined numerically through a shooting method, for any
value of the activation energy of the gas phase reaction.

In this paper, we investigate a specific model of solid propellant combustion. It involves pyrolysis in an
infinitely thin zone at the interface coupled to solid regression and homogeneous gas phase combustion described
by one global reaction with finite activation energy at unit Lewis number. The model is derived from a detailed
system of equations that describes the evolution of the temperature of the solid propellant, the evolution of the
gas phase, and the pyrolysis of the propellant. The model takes into account thermal expansion and density
changes in the gas phase. We study the travelling wave solution of this system of equation, that is we look for a
temperature profile and a wave velocity c, the so-called eigenvalue. In the case of a solid propellant, Verri [10]
presented a demonstration of the uniqueness of the solution and its stability using a different approach, without
modelling the gas phase, but only considering the gas heat feedback as a function of the regression speed with
specific mathematical properties. However, in solid propellant configuration, the separation of the problem into a
gas phase and a solid phase, with a non-trivial coupling condition at the interface on fluxes, introduces additional
difficulties, such as a temperature gradient jump depending on the eigenvalue. These difficulties are overcome
through a detailed dynamical system study of such an heteroclinic orbit in phase space, allowing us to prove the
existence and uniqueness of both the self-similar profile and eigenvalue. The approach is similar to the one used
by Zeldovich et al. [9] in the study of laminar flames. Interpretation of the phase space also allows to better
understand the role of the interface and the influence of the different parameters. A numerical shooting method
is then developed to iteratively find the speed of the wave and ultimately its profile with arbitrary precision. To
the best of our knowledge, no such study has yet been presented. We also propose to assess the efficiency and
potential of the method by first verifying the proposed numerical strategy in comparison to a CFD code developed
at ONERA with the same level of modelling and then follow up with a parametric study of the influence of the
activation energy of the chemical reaction in the gaseous phase. Eventually, the improvement of our approach
compared to the analytical model is investigated as well as the influence of assumptions such as the unitary Lewis
number.

The paper is organized as follows: In section 2, we first introduce the generic equations describing the gas
flow, the solid phase and the coupling conditions. Adding a series of assumptions, we gradually simplify the
system, while still retaining the most important physical aspects, and introduce a travelling wave solution and
derive the equations that describe the wave profile. The impact of the wave speed c is explained. We derive
some general relations to obtain characteristic values for a non-dimensionalization of the problem. In section
3, extending Zeldovich’s approach for laminar flames, we prove the existence and uniqueness of the self similar
temperature profile and wave speed by a dynamical system approach and focus on how to handle the specific solid-
gas interface flux condition. A physical interpretation of the result is given. Section 4 is devoted to the presentation
of the various algorithms used in the numerical resolution based on a shooting method, and the comparison for
various levels of modelling assumptions with a CFD code developed at ONERA. A conclusion on the efficiency
and the potential of the approach is given in section 5.

2. General modelling, proper set of simplifications and travelling wave formalism

In this section we start by presenting the general assumptions usually made for the development of advanced mod-
els for high-fidelity simulations. Introducing additional assumptions that are not too restrictive, we derive another
set of equations that is simple enough to envision an analytical study of travelling wave solutions. Although this
system is much simpler, it is expected to give a realistic picture of the combustion of a solid propellant.
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Figure 1: 1D model of a solid propellant burning

2.1 Derivation of the model, related assumptions and travelling wave formulation

Composition and temperature variations in the solid phase decomposition zone and in the gas flame structure are
often important in the direction normal to the burning propellant surface, so that it is common to adopt a one-
dimensional approach, which greatly simplifies the mathematical developments. The phenomenon is studied in
the Galilean reference frame RG and a schematic representation is provided in Figure 1. The solid phase (the
propellant) is semi-infinite and is located between −∞ and x = σ(t) the position of the interface between the solid
and gas phases. The gas phase is also semi-infinite and is located between x = σ(t) and +∞. The instantaneous
regression speed is c(t) = dtσ(t). Most of the solid propellant numerical models assume the following:

H 1. The solid phase is inert, incompressible and inelastic. No species diffusion takes place in the solid. Far from
the burning surface, the solid phase is at its initial temperature, T(−∞) = T0. All gradients vanish at x = −∞.

H 2. The gas phase is constituted of a mixture of reacting ideal gases in the low-Mach number limit and the
pressure P does not vary with time.

H 3. No species or heat accumulation takes place at the interface. The temperature is continuous across the
interface and its value is denoted Ts(t). The gasification process is controlled by a pyrolysis reaction concentrated
at the interface. The mass flow rate of gaseous species expelled by the solid phase through the pyrolysis reaction
is given by a pyrolysis law of the form:

Ûm = Ap exp
(
−

Tap

Ts

)
(1)

Some further assumption is proposed on the pyrolysis law. This modification has no impact on the physics.
It is very similar to the cold boundary difficulty resolution [11] and will allow for a proper theoretical analysis.

H 4. In fact, the propellant will not be consumed at Ts = T0, T0 being in all realistic cases close to the ambient
temperature. That behaviour is not depicted exactly by the pyrolysis law (1). Therefore we introduce a slightly
modified pyrolysis law that contains a cut-off so that Ûm smoothly goes to 0 as Ts approaches T0:

Ûm = Ap exp
(
−

Tap

Ts

)
φ(Ts − T0) (2)

with φ a C∞ function, such that φ(y) = 0 for y ≤ 0 and φ(y) quickly reaches a value of 1 as y becomes greater
than 0. The function φ can typically be a sigmoid function.

This simplified type of pyrolysis law is frequently used for stationary as well as transient studies of solid pro-
pellant combustion, although it ignores some important effects which only appears in more comprehensive zeroth-
order pyrolysis relations, deduced for instance from activation energy asymptotics [12]. The pre-exponential factor
may contain a dependence in pressure (typically Pn). Adding another dependence on Ts in the form of Tβs with
β > 0 is also possible, and would not affect the results presented further on. Note that all the conclusions made in
this paper remain valid for any other pyrolysis law Ûm, as long as the mass flow rate is strictly increasing with Ts .

To further simplify the problem, we assume:

H 5. Radiative effects are neglected.

3

DOI: 10.13009/EUCASS2019-624



TRAVELLING WAVES SOLUTION FOR SOLID PROPELLANTS COMBUSTION

Using the heat equation to model the evolution of the temperature inside the solid, and the Navier-Stokes
equations with reactions and species transport for the gas phase yields the equations presented without the 1D-
assumption in [8]. The solid phase is represented by its temperature T(x, t) and its constant density ρs . The
gas phase is described by the density ρ(x, t), the constant pressure P, the flow speed u(x, t), and the temperature
T(x, t). The reactive aspect of the flow with ne species (symbol Ei) is taken into account with the addition of
the transport equations for the species mass fractions Yi(x, t) and the addition of the volumetric heat release as a
source term in the energy equation. The volumetric molar production rate of the i-th species is ωi , in mol.m−3.s−1.
We consider nr chemical reactions of the form:

∑ne
i=1 ν

′
i,rEi →

∑ne
i=1 ν

′′
i,rEi . We introduce νi,r = ν′′i,r − ν′i,r , the

global stoichiometric coefficient. The reaction rate of the r-th reaction is Ûωr , in mol.m−3.s−1, and consequently
ωi =

∑nr
r=1 νi,r Ûωr . The molar enthalpy of the i-th species is hi,mol(T) = h0

i,mol
+ Micp,i(T − Tstd) in J.mol−1

with Mi the molar mass of this species, and Tstd the standard temperature at which all standard molar enthalpies
h0
i,mol

are defined. The enthalpies (resp. standard enthalpies) per unit mass are written hi (resp. h0
i ). The gas

and solid phases are coupled at the interface through boundary conditions obtained by integration of the energy
and transport equations around the interface. Assuming the pyrolysis process is concentrated at the interface, we
introduce the "injection" mass fractions Yi,σ− for the different gaseous species, which indicates the mass fractions
obtained after pyrolysis directly at the interface, before entering the gas phase. Due to lack of space, we do not
provide the original system, but we give the interface boundary conditions:


Tσ− = Tσ+ = Ts

− (λs∂xT)σ− = ÛmQp −
(
λg∂xT

)
σ+

( ÛmYi)σ− = ( ÛmYi − ρJi)σ+ ∀ i ∈ n1, neo

(3)
(4)
(5)

Qp is the heat of the pyrolysis reaction, per unit mass of solid propellant consumed. Equation (4) means that the
heat conducted from the gas phase into the solid and the heat generated by the pyrolysis process (if the pyrolysis is
exothermic) are used to heat the solid propellant and sustain the combustion. Equation (5) is the species balance,
i.e. the flow rate of the i-th species generated by the pyrolysis is equal to the flow rate of this species leaving the
surface in the gas phase, minus the species diffusion flow rate Ji .

We introduce the following set of additional assumptions, also shared by the classical analytical models:

H 6. The specific heat of the solid cs is constant. The solid phase thermal conductivity λs is constant.

H 7. The gas phase viscosity is neglected. No binary species diffusion takes place in the gas phase.
The gas phase contains two species: the reactant G1 and the product G2, with mass fractions Y1 and Y2.
There is only one irreversible reaction −ν1G1

(g) → ν2G2
(g).

The species G1 is completely consumed at x = +∞. All gradients are zero at x = +∞.
The species diffusion coefficients Di are equal, Di = Dg ∀i
Both species have the same molar mass M and therefore opposite stoichiometric coefficients (ν1 = −ν2).
The species specific heats cpi are all equal, cpi = cp ∀i, with cp the constant gas specific heat.

H 8. The pyrolysis reaction transforms the solid propellant P into the species G1.

Using these assumptions, we can simplify the equations. We introduce Dth = λg/(ρcp) the thermal dif-
fusivity of the gas, and Ds = λs/(ρscs) the thermal diffusivity of the solid propellant. Having only two species,
we replace the transport equation for Y2 by the global mass balance. We introduce Qmol = M

(
ν1h0

1 + ν2h0
2

)
, the

molar heat of the reaction in the gas phase.
As we aim at studying steady, self-similar combustion waves, we look for a solution in the form of a

travelling wave f (x, t) = f̂ (x − ct) for all the variables. This is equivalent to performing the variable change
x̂ = x − ct, as described in [13]. The speed c corresponds to the regression speed of the propellant surface, it
should thus be considered negative in our study. We suppose that the interface is at the abscissa 0 in the new
reference frame. In this frame, the travelling wave is a stationary solution. To highlight the fact that the variables
associated with these new equations are different from the previous ones, we use the notation “ ·̂ ′′, and we
introduce Ŷ = Ŷ1 for the sake of simplicity. Overall, we obtain the following system of equations:
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System 1. {
− cdx̂T̂ − Dsdx̂ x̂T̂ = 0 (6)



− cdx̂ ρ̂ + dx̂(ρ̂û) = 0

ρ̂(û − c)dx̂Ŷ − dx̂

(
ρ̂Dgdx̂Ŷ

)
= M1ν1 Ûω

ρ̂(û − c)dx̂T̂ − dx̂

(
ρ̂Dthdx̂T̂

)
=
ÛωQmol

cp

ρ̂ =
PM

RT̂

(7)

(8)

(9)

(10)



T̂(−∞) = T̂0

T̂(0−) = T̂(0+) = Ts

−
(
λsdx̂T̂

)
0− = ÛmQp −

(
λgdx̂T̂

)
0+(

ÛmŶ
)

0− =
(
ÛmŶ − ρ̂DgdxŶ

)
0+

∂x̂T̂(+∞) = 0

∂x̂Ŷ (+∞) = 0

(11)

(12)

(13)

(14)

(15)

(16)

The regression speed c appears in these equations in various manners: in the convective terms, in the
interface boundary conditions, in the mass flow rate at the interface Ûm = −ρsc, and through Ts , as the mass flow
rate is linked to surface temperature through (2).

2.2 Mass, species and energy balances

With the aim of performing a theoretical analysis on the previous system, we would benefit from having a di-
mensionless system. To do so, we first derive some balance equations based on the previous equations, in order
to obtain characteristic scales from which we can build dimensionless variables. In order to avoid a notation
overload, we drop the symbol “ ·̂ ”. For further simplifications, we also introduce the following assumptions:

H 9. The specific heats of the solid and gas phases are equal: cp = cs .

H 10. The Lewis number Dth/Dg is 1 in the gas phase, i.e. the heat and species diffusions are equivalent. We
introduce D = Dg = Dth .

Even if questionable, the assumption H9 is often used in the literature ([8, 14, 12, 15]) and the results
obtained are still quantitatively correct. The main effect of this assumption is that Qp is a constant which only
depends on the standard enthalpies. Assumption H10 does not mean that D is constant. It will vary throughout
the gas phase due to the density changes. Integrating the continuity, transport and energy equations in the gas
phase, the heat equation in the solid phase, and using the interface boundary conditions, we can obtain obtain
global balance equations. We can also introduce a dimensionless enthalpy which can be shown to be a constant in
the gas phase. No proofs are given, as these properties are common and are already demonstrated in the work of
Zeldovich on laminar flames [9]. We introduce Q = −Qmol/(ν1M ) the heat of reaction in the gas phase per unit
mass of G1

(g) consumed.

Proposition 1. The conservation of the mass flow rate implies: ρ(x) ( u(x) − c ) = −ρsc = Ûm for x > 0
The complete consumption of G1 implies:

∫ +∞
0 Ûω(T(x),Y (x))dx = − Ûm/(M ν1) The burnt gas temperature at

x = +∞ is Tf = T0 + (Q + Qp)/cp .
Under assumption H10, we can define a dimensionless combustion enthalpy which is constant in the gas

phase:

h = − Y
ν1

+
M1cp(T − T0)

Qmol
=

M1cp(Tf − T0)
Qmol

Remark 1. The complete pyrolysis reaction P(s) → G1
(g) can be decomposed into two successive reactions:

• P(s) → G1
(s), the transformation of the solid propellant P(s) into the pyrolysis product at solid state G1

(s),
with the heat of reaction Qs = h0

P(s)
− h0

G1
(s)

• G1
(s) → G1

(g), the sublimation of the solid pyrolysis product G1
(s) into G1

(g), at constant temperature Ts , with
the latent heat Lv = hG1

(g)
(Ts) − hG1

(s)
(Ts) = (h0

G1
(g)
− h0

G1
(s)
) + (cp − cP

G1
(s)
)(Ts −Tstd) with cP

G1
(s)

the specific

heat of the pyrolysis product G1 at solid state, which we will assume equal to the solid propellant specific
heat cs .

This leads to Qp = Qs − Lv . Qp is the combination of a constant heat of reaction Qs and a latent heat of
sublimation Lv that depends linearly on the surface temperature. On the opposite, the heat of reaction Q for
G1
(g) → G2

(g) in the gas phase does not depend on temperature as both species have the same specific heat.
The assumption cs = cp makes the upcoming theoretical analysis much easier. However, the numerical

method presented further in this paper does not require this assumption.

5

DOI: 10.13009/EUCASS2019-624



TRAVELLING WAVES SOLUTION FOR SOLID PROPELLANTS COMBUSTION

2.3 Dimensionless equations

Using the equations from the System 1 and the results obtained in the previous part, we can now write dimension-
less equations for our problem.

System 2. Introducing x̃ =
x
L

, c̃ =
cL
Ds

, ũ =
uL
Ds

, θ̃ =
T(x̃) − T0

Tf − T0
, η =

λs
λg

, and using the notation ·′ = dx̃ ·, we

have: {
c̃θ̃ ′ + θ̃ ′′ = 0 for x̃ < 0
ηc̃θ̃ ′ + θ̃ ′′ = −Ψ for x̃ > 0

(17)
(18)

with the dimensionless heat source term:

Ψ(θ̃) =
L2Qmol

λs(Tf − T0)
Ûω(θ̃) ≥ 0 (19)


θ̃(−∞) = 0
θ̃(0−) = θ̃(0+) = θ̃s

θ̃ ′(0+) − ηθ̃ ′(0−) = S̃(c̃)
θ̃(+∞) = 1

(20)
(21)
(22)
(23){

θ̃ ′(−∞) = 0
θ̃ ′(+∞) = 0

(24)
(25)

with the target interface balance:

S(c̃) = η
Qp

Qp + Q
c̃ (26)

In order to obtain this system for the solid phase, we take equation (6), divide it by (Tf − T0) to let θ appear, and
switch the spatial derivatives from x to x̃ (Ldx = dx̃); we then multiply it by L2/Ds to obtain (17). For the gas
phase, Proposition 1 allows us to build a bijection between T and Y . Therefore everything can be expressed as a
function of T , in particular the reaction rate Ûω(T,Y ) can then be expressed as Û̃ω(θ̃). Equation (18) is obtained from
(9) in a similar fashion as for the solid phase. Equation (22) can be obtained after the same kind of process, with:
S̃(c̃) = cLρsQp/(λg(Tf − T0)) = c̃ρsDsQp/(λg(Tf − T0)). Using the global energy balance and the definitions of
η, Ds , we get (22) and (26). All the other boundary conditions are direct translations of the ones from System 1.

Remark 2. For a given value of c, θs is given by (2). Therefore the second order ODE (17) with boundary
conditions (20) and (21) has a unique solution. The same goes for the ODE (18) with boundary conditions (21)
and (23). Boundary conditions (24) and (25) are required for a consistent mathematical behaviour at infinity. The
difficulty arises from the dimensionless interface thermal balance (22). For a random value of c, it is likely that
it will not be satisfied. However the dependence of this condition on c through the target interface balance S
allows us to envision that some specific values of c might lead to this condition being verified (hence the name
“target” for S). Therefore, the regression speed c is a key variable and can be considered as an "eigenvalue" of
the problem.

Remark 3. Ψ has the same behaviour as the reaction rate Ûω. It is positive for θ̃ ∈ [0, 1] and vanishes for θ̃ = 1,
since all the fuel is burned, i.e. Ψ(1) = 0.

Remark 4. The sign of the temperature gradient jump across the interface [dxT]0+

0− , or equivalently
[
dx̃ θ̃

]0+

0− ,
depends on three factors:
• η = λs/λg the ratio of the thermal conductivities in the gas and in the solid
• Qp the reaction heat of the pyrolysis reaction, detailed in remark 1
• the value of the interface temperature, which is directly related to the regression rate

As an example, in a configuration where Qp = 0, we have S̃(c̃) = 0. If η > 1 then dxT(0+) > dxT(0−), but if
η < 1, then dxT(0+) < dxT(0−). Let us underline that the presence of the ratio of thermal conductivities has a
strong impact on the sign of the jump.

3. Existence and uniqueness of a travelling wave solution profile and velocity

In this section, we will use the previously established dimensionless system to prove that there exists at least one
value of the regression speed c such that all boundary conditions can be satisfied and the complete travelling wave
problem can be solved. We then proceed to show that there is only one such value of c. For the sake of simplicity,
we drop the “ ·̃ ” notation.
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3.1 Monotonicity of the temperature profile

A first step in our proof of existence is to show that the temperature profile is strictly increasing in the gas phase.

Proposition 2. The temperature is strictly monotonous and increasing from −∞ to +∞. There exists a bijection
between x and θ.

This proposition is established by considering the behaviour of the temperature in the two phases succes-
sively. Solid phase Let x0 ∈] − ∞, 0[ the position of a local extremum for θ. θ ′(x0) = 0, therefore equation (17)
implies θ ′′(x0) = 0. If we integrate this equation from −∞ to x0, we get θ(x0) = 0. Therefore no local extremum
can be lower than 0. If a local maximum exists at x0, θ(x0) = 0 therefore as θ(−∞) = 0 there exists a local mini-
mum x1 < x0, and we must have θ(x1) < 0, which contradicts our previous finding. Therefore no local extremum
exists for θ in the solid phase. As c < 0 implies θ(0) = θs > 0 (see (2)), we can conclude that θ is strictly increas-
ing in this phase. Gas phase We want to prove that the temperature profile is monotonous and increasing in the gas
phase. Using a reductio ad absurdum, let’s suppose that ∃ x0 / θ ′(x0) = 0, local extremum or inflection point for
θ. The energy equation then reads: θ ′′(x0) = −Ψ(θ(x0)) < 0, which means that x0 can only be a local maximum.
As x0 is local maximum, there exist x1 > x0 such that θ ′(x1) = 0 and θ ′(x) < 0 ∀ x ∈ [x0, x1]. x1 can be +∞. We
obviously have θ(x1) < θ(x0). Integrating equation (18) from x0 to x1 yields: ηc[θ(x1)−θ(x0)] = −

∫ x1

x0
Ψ(θ(x))dx.

The left-hand side is strictly positive, but the right-hand side is strictly negative, therefore this is not possible. No
local maximum x0 exists. Overall, θ does not have any local extremum in the gas phase, and as θ(+∞) > θ(0+), θ
is monotonous and increasing in the gas phase. This proof is the consequence of a much more general principle
in the study of second order elliptic equations called the maximum principle [16].

We now make use of the monotonicity of θ to switch from a spatial point of view to a phase space one.
The bijection between θ and x allows for a variable change from x to θ in our equations. This leads to the phase
portrait equations in the phase plane (θ, dxθ).

System 3. Introducing γ = θ ′, the equations from System 2 are equivalent to the following set of first-order ODEs
and boundary conditions:

{
cγ(θ) + γ(θ)dθγ(θ) = 0 ∀ θ ∈ [0, θs(c)]
ηcγ(θ) + γ(θ)dθγ(θ) = −Ψ(θ) ∀ θ ∈ [θs(c), 1]

(27)
(28)


γ(0) = 0
γ(1) = 0
γ(θ+

s ) − ηγ(θ−s ) = S(c)

(29)
(30)
(31)

The system is established by studying the problem in the solid, using the definition of γ in equation (17) and using
dxγ = dθγdxθ = γdθγ. We obtain (27). The same process is used for the gas phase. The boundary conditions are
directly obtained from the ones of the dimensionless system.

Remark 5. This set of equations is similar to the one obtained by Zeldovich et al. [9] for a homogeneous gaseous
laminar flame. In this reference, the phase portrait of the temperature profile is also split in two parts. The first
one represents the part of the profile where the temperature is lower than an artificial cut-off temperature θignition,
below which the reaction rate Ψ is forced to zero. This is purely a convection-diffusion zone. This allows the "cold
boundary" problem [11] to be overcome. The second part of the laminar flame phase portrait is the same as ours:
the gas phase undergoes a reaction which creates a steep increase in temperature before reaching the adiabatic
combustion temperature behind the combustion wave. This is a convection-diffusion-reaction zone. The two zones
are joined using the continuity of the temperature profile and its gradient, as no reaction or heat accumulation
takes place at the interface. In our case, the first part of the phase portrait is not associated with a cut-off of the gas
phase reaction rate, but with the fact that the solid phase is inert, therefore it only heats up through heat diffusion.
Our problem thus differs in two ways with the laminar flame one. First, the pyrolysis reaction is concentrated at
the interface and causes a discontinuity of the temperature gradient, which depends on the wave speed value c.
Secondly, the position of the interface in the phase portrait θs also varies with c, whereas θignition is an arbitrary
constant. We can artificially make our problem equivalent to the laminar flame’s one by forcing Qp = 0, η = 1,
θs = θignition, Ds = Dg (and cs = cp as assumed in H9).

The rest of the study will be based on the analysis of the phase portrait of the system, i.e. the plot of γ
versus θ. Such a phase portrait is represented in figure 2.
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γ(θs-)
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Figure 2: Schematic phase portrait in both phases

γ

θ

γ

10
Figure 3: Evolution of the phase portrait with Ûm.
Each curve corresponds to the solution curve for one
value of Ûm.

3.2 Existence of a solution

We will now show that there exists at least one wave speed c < 0 such that the travelling wave problem previously
stated has a solution. We introduce ∆γ(c) = γ

[
θ+
s (c)

]
− ηγ

[
θ−s (c)

]
, the effective interface balance at wave speed

c and ξ(c) = ∆γ(c) − S(c), which we will call the interface balance mismatch. We introduce another assumption,
non-restrictive for any real application:

H 11. The heat of the pyrolysis reaction Qp is such that Qp > −Q.

Proposition 3. Under the assumption H4 so that Ûm(T0) = 0, and assuming H11, there exists at least one wave
speed c such that the problem stated in System 2 can be solved. All solutions for the wave speed c reside in the
interval ] cmax, 0 [, with cmax the dimensionless wave speed such that θs(cmax) = 1.

The global phase portrait in the gas and solid phases is schematically represented in figure 2. We see that both
phase portraits will not join at θs , but rather that there will be a jump of γ at this point, as explained in remark 2.
More precisely, the thermal boundary condition may be reformulated as:

∆γ(c) = S(c) ⇔ ξ(c) = 0

with ∆γ the effective interface balance, i.e. the interface balance we obtain for a given value of c by integrating
equations (17) and (18) separately, and ξ the interface balance mismatch, which is non-zero when the thermal
balance condition (22) is not satisfied. If the wave speed c is a good solution, then we have ξ(c) = 0.

To prove the existence of a value of c such that the complete travelling wave problem is solved, we have to
prove that there exist at least one value of c such that this equality is satisfied. As ξ is a continuous function of
c, we will try to find two values of the wave speed c1 and c2 such that ξ(c1) and ξ(c2) have opposite signs. That
would imply that there is at least one value of c ∈ [c1, c2] such that ξ(c) = 0. Therefore we exhibit two limit cases
for the wave speed c which naturally yield a different sign for ξ:

• Case c = 0: In this case Ûm = 0, i.e. the solid propellant remains inert. Using assumption H4, we obtain
θs = 0 and we are still satisfying the monotonicity of θ shown in Proposition 2 (the monotonicity is strict
only if θs > 0). With c = 0, Proposition 1 yields u = 0. If we denote with a “0” subscript the values
obtained with c = 0, the following equalities are satisfied γ0(θ−s ) = 0, γ0(θ+

s ) = (2
∫ 1

0 Ψ(y)dy)
1/2 = (2I0)1/2,

S(c=0) = 0. Consequently ∆γ(c=0) = (2I0)1/2 > S(c=0), and therefore ξ(c = 0) > 0.

• Case c = cmax : The solution we are looking for is monotonous and thus requires that θs < 1.Based on
the pyrolysis law, the case θs = 1 corresponds to a certain value cmax < 0 of the wave speed. We can
then directly integrate the phase portrait equations (27) and (28) and get γ0(θ−s ) = −cmax , γ0(θ+

s ) = 0
and S(c) = η cmax Qp/(Qp + Q). Thus, ξ(cmax) = ∆γ(cmax) − S(cmax) = ηcmax

(
1 −Qp/(Qp + Q)

)
=

η cmax Q/(Qp + Q). Assuming H11, we obtain ξ(cmax) < 0.

In realistic cases for Qp , we have shown that ξ(0) > 0 and ξ(cmax) < 0. Therefore, as ξ is continuous, there
exists at least one value of c ∈]cmax, 0[ such that ξ(c) = 0. This proves that there exist a solution to the problem
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stated in System 3, therefore also for the dimensionless problem from System 2 and for the simplified travelling
wave problem from System 1. Potential solutions with c > 0 or c < cmax are physically meaningless and are not
further considered.

3.3 Uniqueness of the solution

Having proved that there exists at least one value of c such that the travelling wave problem can be solved, we
now proceed to show that there is only one such value. There are two cases, depending on the sign of Qp .

Proposition 4. If Qp < 0, there exists a unique value of the wave speed c such that the travelling wave
problem exposed in System 2 has a solution.

Studying the existence of a solution, we have introduced ξ(c) = ∆γ(c) − S(c) the interface balance mismatch, and
showed that it undergoes a change of sign between c = 0 and c = cmax . We now proceed to show that ξ is strictly
monotonous on this interval.

In the solid phase, we have γ(θs(c)−) = −cθs(c). Deriving with respect to c, we obtain:

dcγ(θs(c)−) = −θs(c) − cdcθs(c)

Based on the pyrolysis law (2) and as c and Ûm are of opposite signs, we see that dcθs < 0, therefore dcγ(θs(c)−) <
0. In the gas phase, we can derive equation (18) with respect to c: ∂c(∂θγ) = −η + (∂cγ/γ2)Ψ(θ). Introducing
y = −γ/η and Π(θ) = Ψ(θ)/η2, it yields ∂c(∂θ y) = 1 + (∂cy/y2)Π(θ). Let χ =

∫
Π/y2, the equation then has

the solution ([9], page 256): ∂cy = − exp(χ)
∫ 1
z

exp(−χ)dz < 0. Therefore, we obtain ∂cγ(θ+
s ) = −η∂cy > 0.

Overall ∂c∆γ > 0. Deriving equation (26), we get: ∂cS = ηQp/(Qp + Q). We know that Qp is in magnitude
lower than Q, therefore ∂cS has the same sign as Qp . If Qp ∈] − Q, 0], ∂cS < 0, therefore we have ∂cξ > 0. As
ξ(cmax) < 0 and ξ(0) > 0, this implies the uniqueness of the solution wave speed c.

Proposition 5. If Qp > 0, there exists a unique value of the wave speed c such that the problem stated in System
2 has a solution c, which belongs to the interval ]cmax, cmin[ with cmin such that θs(cmin) = Qp/(Q + Qp).

This result is obtained in a manner almost identical to the previous one. The difference lies in the behaviour
of S. With Qp > 0, we have ∂cS > 0, as is ∂c∆γ, therefore we cannot directly conclude on the sign of ∂cξ > 0
for c ∈ [cmax, 0]. Therefore we will now try to show that there exists a smaller interval [cmax, cmin] such that
ξ(cmin) > 0 and ξ(cmax) < 0, and such that ξ is strictly monotonous. This would prove that the solution is unique
within this interval.

Let us introduce k = Q/Qp . We can write ∂cS = η/(1 + k). We will now define a wave speed cmin(k) such
that there is a unique value of c in ]cmax, cmin(k)[ such that ξ(c) = 0. Let us find a lower bound for dcξ:

1
η

dcξ =
1
η

(
dcγ(θ+

s ) − ηdcγ(θ−s )
)
− 1

1 + k

We already proved that dcγ(θ+
s ) ≥ 0, and that −dcγ(θ−s ) = θs + cdcθs ≥ θs , therefore:

1
η

dcξ ≥ θs −
1

1 + k

Consequently, to ensure dcξ ≥ 0, we have the following sufficient condition:

θs ≥ θs,min =
1

1 + k
=

Qp

Qp + Q
=

Qp

cp(Tf − T0)
⇔ Ts ≥ Ts,lim = T0 +

Qp

cp

Here we can give a physical interpretation of Ts,lim. It is the temperature that would be achieved at the
interface without any heat feedback from the gas phase. Indeed if dxT(0+) = 0, we can integrate equation 6 from
−∞ to 0 and find Ts = T0 + Qp/cs . As we assume cp = cs , we recover our expression of Ts,lim. In our case we
have shown that γ is always positive in the gas phase, therefore heat is always conducted from the gas phase into
the solid phase, which results in Ts > Ts,lim. That is also what we would expect from a physical point of view, as
we know the gas phase will actually heat up the solid, not cool it down.

Let us now compute ξ(cmin) = γ(θ+
s,min, cmin) − ηγ(θ−s,min, cmin) − ηcmin/(1 + k), that is ξ(cmin) =

γ(θ+
s,min, cmin). The strict monotonicity of θ implies that γ is always positive, therefore ξ(cmin) ≥ 0. As we
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know that ξ(cmax) < 0, ξ(0) > 0 and proved that dcξ(c < cmin) > 0, we can conclude that there is a unique
solution c ∈]cmax, cmin[ such that ξ(c) = 0.

At this point, we have proved that there exists only one steady combustion travelling wave solution for the
combustion of a homogeneous solid propellant with simplified kinetics and a pyrolysis concentrated at the surface.
The assumption H9 (cs = cp) made the proof of uniqueness much easier. However it can easily be relaxed in the
numerical method, as it only changes the definition of S, Qp and Tf . It is likely that the solution may remain
unique on a certain range of values for the ratio cp/cs . As highlighted in the first part, the simplified pyrolysis
law can also be replaced by a more evolved one, like the ones from [12], as long as the mass flow rate is strictly
increasing with the surface temperature.

3.4 Heteroclinic orbit and critical points

The points x = −∞ and x = +∞ are critical points for the System 1, i.e. all derivatives are zero. These points
correspond to (θ = 0, γ = 0) and (θ = 1, γ = 0). The phase portrait of our system is a heteroclinic orbit that joins
these two points. (0, 0) is more difficult to analyse, as it is not an hyperbolic point, however we can easily integrate
(17) and find that the solution is γ = −cθ. The other point (1, 0), in the gas phase, is a hyperbolic point, therefore
the solution curve (orbit) will depart from the associated stable manifold. We can determine the slope dθγ(1) by
means of a linearisation. We use the approximations γ(θ) = α(θ − 1) and Ψ(θ) = β(θ − 1), with α = dθγ(1) and
β = dθΨ(1). Following remark 3, we know that β < 0. Injecting these linearised expressions into (18), we get:
α2 + α Û̃m + β = 0. This second order equation corresponds to ∆ = Û̃m2 − 4β > 0. We have two real solutions of
opposite signs. As we require α = dθγ(1) < 0 so that our solution remains at γ ≥ 0, we find:

α =
Û̃m
2

(
1 −

√
1 − 4β
Û̃m2

)
(32)

This behaviour at critical points will be used in the numerical strategy based on a shooting method.

3.5 Physical interpretation and discussion

Let us remind the reader that the pyrolysis mass flow rate Ûm = −ρsc is positive, whereas c is negative. We have
seen that γ(θs(c)+) diminishes as the mass flow rate in the gas phase increases, independently of the interface
and solid phase. Therefore the heat feedback from the gas phase onto the solid diminishes as well. ∆γ(c) is the
dimensionless thermal power excess that is available to power the pyrolysis process, i.e gas heat feedback minus
the thermal power used to heat up the solid. We have dc∆γ > 0, i.e. ∆γ diminishes as Ûm increases, therefore
increasing Ûm (i.e. lowering c) will decrease thermal power available for the pyrolysis. S(c) is the dimensionless
thermal power that is required for the pyrolysis process to be sustained at the given value of c. dcS indicates how
this required thermal power evolves with the pyrolysis mass flow rate Ûm = −ρsc.

case Qp < 0 In the case Qp < 0, the pyrolysis process is endothermic, i.e. it absorbs heat from the gas and
solid phases. This can be the case if the sublimation of G1

(s) into G1
(g) is very demanding in terms of energy, which

corresponds to Lv > Qs in remark 1. We showed that dcS < 0, i.e. the thermal power required by the pyrolysis
increases with the mass flow rate. If, for an arbitrarily chosen value of c, we have ∆γ(c) > S(c), it means that the
heat feedback from the gas phase is too high compared to the heat that would be absorbed by the solid phase and
the pyrolysis reaction in a stationary state. The fact that dc∆γ > 0 and dcS < 0 shows that as we lower the mass
flow rate, the thermal power excess transmitted by the gas phase to the interface increases whereas the thermal
power needed for the pyrolysis decreases. Therefore we can find a value of c such that both powers cancel out.

case Qp > 0 The same reasoning can be applied. In this case the pyrolysis is exothermic, thus part of the heat
conducted from the gas phase into the solid is used to maintain the surface temperature. We showed that dcS > 0,
i.e. the thermal power required by the pyrolysis decreases as the mass flow rate increases, in the sense that it
is actually negative and increasing in magnitude. This is physically coherent with the fact that the pyrolysis is
exothermic. We established that in the interval ]cmax, cmin[, dcξ > 0. It shows that as we lower the mass flow
rate Ûm, the thermal power excess transmitted by the gas phase to the interface will increase more rapidly than the
thermal power needed for the pyrolysis. Therefore, starting from a value of Ûm such that the heat feedback is too
strong, lowering Ûm will only worsen the interface thermal balance. We actually need to increase Ûm, up until the
point where the thermal power S required by the pyrolysis catches up with the thermal power excess ∆γ.
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The gradient jump [dxθ]0
+

0− is the same as [γ]θs (c)
+

θs (c)− . Using (22), we can rewrite this as [γ]θs (c)
+

θs (c)− = S(c) + (η −
1)γ (θs(c)−). In the particular case where η = 1, i.e. both phases have the same thermal conductivity, this reduces
to S(c), thus the gradient jump has the sign of S. If we have η , 1, the sign of the gradient jump will depend on the
gradient in the solid phase at the interface. For example, if η > 1, the temperature gradient jump at the interface
will be positive only if S(c) > (1 − η)γ(θs(c)−).

This theoretical thus study brings in two aspects. First, it allows to describe a variety of physical scenarios
presented in this paragraph and shows that the modelling, even if simplified, still involves sufficient physics for
applications. Second, and this is the purpose of the next section, it allows for an efficient numerical resolution at
arbitrary precision.

4. Numerical method and validation against CFD code

In this section, we present the numerical shooting method employed to iteratively find the correct wave speed and
the temperature profile. We also present a one-dimensional CFD code developed at ONERA for the study of solid
propellant combustion. Both these methods will be compared in various test cases, in terms of solution profile
as well as sensitivities to the gas phase reaction activation energy. The improvement as compared to the usual
analytical models will be analyzed and some parametric study will allow a characterization of the influence of the
unit Lewis number assumption.

4.1 Shooting method

Determination of the phase portrait for a given c For a given value of c, we can integrate the dimensionless
equations from System 3, as first-order ODEs for the variable γ as a function of θ. In the solid phase, the integration
is analytical, as we directly obtain γ(θ) = −cθ. This gives us the value of γ for θ ∈ [0, θs(c)]. In the gas phase,
equation (28) can be written as: dθγ = −ηc − (Ψ/γ). We would like to integrate this equation from θ = 1 to
θ = θs . As explained in 3.4, the starting point (θ = 1, γ = 0) is a critical point for our system, therefore starting
a numerical integration from this point is impossible. To overcome this problem, we simply use the linearized
solution slope α given in (32), and start the integration from (1 − ∆θ,−α∆θ) instead of from the critical point. We
typically use ∆θ = 10−6. To maximize the accuracy, the integration of the gas phase portrait equation is performed
using the Radau5 algorithm [17], featuring an adaptive step size, with very tight tolerances (≈ 10−14). Once the
profile of γ is computed, we can go back to the spatial representation using the definition γ = dxθ, by computing
x(θ) =

∫ θ
θs

z
γ(z)dz, so that x(θs) = 0.

Determination of c through a dichotomy process Based on our analysis of ξ, we know that ξ(0) > 0 and
ξ(cmax) < 0. In the case Qp < 0, we start a dichotomy from the two initial points 0 and cmax , the latter being
computed beforehand from the global energy balance and the pyrolysis law. If Qp > 0, we replace the starting
value 0 with cmin. In both cases, ξ is monotonous between the two initial points and undergoes a change of
sign, therefore convergence of the dichotomy process is ensured. For each new guess of c, we integrate the phase
portrait equations as explained previously, and obtain the value of ∆γ(c). We compare it to the value of S(c) to
compute ξ(c). Based on the sign of ξ(c), we can shrink the interval where ξ changes sign, until the changes in c
between each iteration becomes small enough. We could also perform a constrained optimization on the variable
c, minimizing the objective function f (c) = [S(c) − ∆γ(c)]2, with the constraint c ∈ [cmax, cmin]. Practically,
the optimization method is quicker to find the approximate solution, but fails at determining c as precisely as the
dichotomy process, even when using tight tolerances. That is why the dichotomy method will be used primarily.

Remark 6. This method is bound to be more accurate than the analytical models discussed in the introduction,
as these models basically use the same assumptions, but also assume that the activation energy of the gas phase
reaction is either infinite or zero. Our method does not need this information and will better reproduce the gas
flow. This comes at the cost of having to iterate on the value of c, each time integrating numerically the phase
portrait equations. However, this cost will be very low, as each iteration only requires the integration of the simple
ODE (18). This method is consequently very useful to perform extensive parametric studies.

The numerical shooting method contains 3 sources of error:
• Error in the estimation of dθγ(1), used to avoid the critical point in the gas phase
• Error in the numerical integration of the gas phase temperature profile.
• Convergence precision achieved by the shooting method on the value of c

Let us address the different items in this list. First, a simple parametric study on the value of ∆θ has shown that dθγ
is a constant in the neighbourhood of the critical point. Different values of ∆θ have been tested and the converged
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regression speeds are exactly identical for all ∆θ lower than 10−3. Consequently the linearisation around the
critical point is a reasonable approach and the error it produces is strictly limited. The numerical integration of
the gas phase with the Radau5 algorithm with very tight tolerances is close to machine-precision, as the problem
is not very stiff and the step size is dynamically adapted to maximize precision. To assert this, different values of
the integration tolerance were tried, ranging from 10−7 to 10−14. The converged regression speeds were all equal
within the first 8 non-zero digits. Therefore the numerical integration is fully converged and does not cause any
error. Finally, the dichotomy process usually allows to converge the solution c with a relative error of the order of
10−10. Overall there is no real practical limitation to the precision of this numerical shooting method.

4.2 Reference CFD code

We wish to compare our semi-analytical model with a proven CFD code in a less restrictive framework. The
aim is to verify the shooting method results and validate our assumptions. The CFD tool developed at ONERA
is a Fortran code based on a finite-volume approach for the one-dimensional problem. The model has also been
adapted for the study of the aluminium droplet combustion, and is exposed in [18]. The molecular diffusion fluxes
are approximated using a 2nd-order central difference scheme. The convective fluxes are approximated by a first-
order upwind scheme, or second-order hybrid scheme weighted by the local Pechlet number. The equations are
written in their steady form in the travelling combustion wave reference frame. They are discretized alongside the
boundary conditions to represent a system of coupled non-linear equations. A modified Newton method is used to
determine the solution, as described in [19]. The Jacobian matrix is computed numerically by perturbing the state
variables. The convergence strongly depends on the initial solution. If convergence is poor, temporal evolution
terms can be added to the equations to approach the steady solution through a number of transient iterations. This
code also contains an automatic grid-refinement algorithm that ensures the mesh is fine enough in the regions
where the gradients or the curvature are high. The refinement is performed after each successful convergence to
a steady solution, until all refinement criteria are satisfied. The code can handle detailed chemistry by accessing
reaction and thermodynamic data through an interface with CHEMKIN-II. Detailed molecular transport with
binary species diffusion is also possible with the use of the EGlib library. However for the comparison with the
numerical shooting method, these additional capabilities will not be used. This CFD code yields solutions which
are subject to different sources of errors: the quality of the discretization (refinement), the tolerance for the Newton
method, and the fluxes approximations.

4.3 Numerical verification and parametric studies

4.3.1 Reference case with unitary Lewis

The first test case is the combustion of a 1D-equivalent of the AP-HTPB propellant. The values for the different
properties are similar to the ones presented in [8]. The activation energy for the gas-phase reaction is Ea =

58.7 kJ = 14.0 kcal, which corresponds to an activation temperature Ta = 7216 K. The pressure is set to 5 MPa.
Qp = 1.8 × 105 J.kg−1, and Q = 3.9 × 106 J.kg−1. For the CFD code, the diffusion coefficient Dg for both species
is taken as a linear function of T , such that the Lewis number Le = (λg/(ρ(T)cp))/Dg(T) is 1 across the gas phase.
Figure 4 shows a visual comparison of the dimensionless temperature θ and mass fraction Y profiles. Table 1 lists
the values of some important results. The agreement is very good, and has been verified for several other values
of the pressure P (e.g. 0.5 MPa), thus allowing us to conclude on the verification of our numerical strategy and
model implementation.

Semi-analytical CFD
c (m/s) 9.41 × 10−3 9.55 × 10−3

Ts (K) 999.5 1000.5
Y (0+) 0.821 0.820
u(0+) (m/s) 0.372 0.384
Tf (K) 3541.1 3541.1

Table 1: Comparison of the main results

4.3.2 Parametric study with variable gas phase activation energy

We know that for this simplified chemical mechanism, the activation energy Ea of the gas phase reaction will
be of paramount importance. Indeed, if Ea is low, the reaction will be very strong in a narrow zone just above
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Figure 4: Plot of θ and Y of the semi-analytical solution (dots) with the numerical simulation (dashed lines)

the surface, which leads to a strong heat feedback and a high regression rate. On the opposite, if it is very large,
the reaction will be spread out spatially, thus diminishing the heat feedback from the gas phase onto the solid
propellant, resulting in a slower regression rate.

To highlight the effect of Ea, we compute with both methods the temperature profile for 3 values of Ta =

Ea/R (activation temperature), representative of low, mid and high activation energies. The pressure remains at 5
MPa. The Lewis number is 1 for both methods. All the other parameters are not modified, therefore neither the
regression speed, the surface temperature, nor the gas heat feedback will be the same for all three cases.

Figure 5 shows the spatial temperature profiles. We see that as Ta decreases, the profile becomes sharper
and the flame gets closer to the surface of the propellant. Figure 6 shows the phase portraits of these 3 simulations.
The ordinate dxT has been scaled for each simulation separately, so that the maximum is 1, otherwise the high
values of dxT encountered in the case Ta = 0 would make it difficult to see the differences. As Ta increases, we see
that the abscissa Ts , i.e. the propellant surface temperature at which there is a temperature gradient discontinuity
between both phases, increases and the height of the gradient jump increases. The increase of Ts is related to the
increase of the heat feedback as the flame becomes thinner, which we can observe in figure 5. The evolution can
be counter-intuitive at first. Indeed the gradient jump [γ]θ

+
s

θ−s
can be linked back to the evolution of S with c. We

have Qp > 0, thus we know that dcS > 0. Based on the pyrolysis law, we also have dTs c < 0 (the mass flow
rate increases with Ts , therefore c becomes more and more negative). Overall we get dTs S < 0, and consequently
S(c) < 0 as S(0) = 0. We would then expect to have a negative gradient jump with γ(θ+

s ) < γ(θ−s ). However
we see that the opposite is true: as Ta increases, c decreases but the gradient jump increases. This is because we
forgot about η which appears in the thermal interface balance condition (22). This relation tells us that if S(c) < 0,
then γ(θ+

s ) < ηγ(θ+
s ). If we had η = 1, we would have a negative gradient jump. However in our case η ≈ 1.5,

and all the other parameters are such that we can actually obtain an increase of the gradient jump.
The fact that the gas phase portrait for Ta = 0 is a straight line can be surprising. This is actually related

to the form of the Arrhenius law used. The reaction rate is Ûω ∝ [G1]T exp(−Ta/T). Using the constant enthalpy,
expressing the concentration [G1] as ρY/M and using the ideal gas law, the linear dependence in T disappears.
Switching to θ instead of T then introduces a linear dependence in (1− θ). It is then easy to verify that γ as a linear
function of the form γ = α(1 − θ) is solution of equation (18).

A more thorough parametric study has been performed to obtain figure 7. The agreement of both methods
for the prediction of the regression speed is very good on the whole range of activation temperatures. The relative
error lies within 1.5%. An important remark is that the CFD solution very often fails to converge when the initial
solution and the initial mesh are not well suited. For example, the case Ta = 0 involves very strong temperature
gradients, which required adding many more mesh points close the surface for the initial solution. On the opposite,
the case Ta = 15000 K gives a very smooth and slowly evolving temperature profile, but this translates to a very
spread out flame, requiring additional mesh points far from the surface so that the combustion process is fully
represented. Rather than remedying these problems manually, we used the semi-analytical method to generate
the initial solution, and generated a mesh such that the increase in temperature between each point is not too
big, and so that the mesh extends far enough from the surface so that the gas phase reaction is completed within
the computational domain. This way, the CFD code converges very quickly and can further refine the mesh if
needed. This highlights one of the main advantages of the semi-analytical method, which is that the solution
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Figure 5: Temperature profiles, CFD results (full
lines) compared to semi-analytical results (circles)

Figure 6: Normalized phase portraits, CFD results
(full lines) compared to semi-analytical results (cir-
cles)

Figure 7: Regression speed as a function of acti-
vation temperature, CFD results compared to semi-
analytical and analytical results

Figure 8: Relative error of c predicted by the semi-
analytical method for different Lewis numbers

always converges.
Figure 7 also shows the results of the analytical models WSB and DBW. The pre-exponential factors Ap

and A were adjusted so that both models predict the same regression speed at Ta = 7216K as the CFD model. The
WSB model assumes Ta = 0, therefore the regression speed does not vary with Ta. We see that the tendencies
are reasonable, even if not perfect agreement (we use a log scale) between the semi-analytical model and the
DBW model for high activation energies. However the DBW model, which assumes high gas phase activation
energy, falls apart when Ta is decreased. Overall, the semi-analytical model is a more generic model that produces
quantitatively good results, without any assumption on Ta.

4.3.3 Parametric study on the Lewis number

To show the limits of the semi-analytical model, we conduct a study on the effect of a constant Lewis number, but
with a value different than 1. To do so, just as before, the CFD code uses species diffusion coefficients that are
linear with T , such that, as λg and cp do not depend on the temperature, we have Le constant in the gas phase.

If the Lewis is high, heat diffuses much faster than species, therefore we expect steeper temperature profiles,
resulting in a faster regression speed. This is confirmed in figures 9 and 10, which show the temperature profiles
and phase portraits for 3 different values of Le. Figure 8 show the relative error of the semi-analytical model
for the estimation of c, compared to the CFD result, for Lewis numbers within the reasonable range 0.5 to 3.
As expected, the minimum error is reached around Le = 1. When the Lewis number is decreased below 1, the
species diffuse faster than the heat, therefore the flame is more spread out. For Le > 1, the semi-analytical model
underestimates c as it underestimates the temperature gradients around the surface. For Le < 1, c is overestimated.
Overall, in a realistic range of Lewis numbers, the relative error lies within 20% and thus the unit Lewis number
assumption still allows for a quantitatively reasonable solution.
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Figure 9: Temperature profiles, CFD results (full
lines) compared to semi-analytical results (dots) Figure 10: Phase portraits, CFD results (full lines)

compared to semi-analytical results (dots)

5. Conclusion

We have presented a new method for the simplified stationary combustion of a solid propellant. The main assump-
tions are that the gas phase only contains one reactant and one product, the reactant being transformed into the
product by a single irreversible reaction, and that the Lewis number is unitary. Considering solutions in the form
of travelling waves, we have derived phase portrait equations which can be used in a numerical shooting method
to determine the correct regression speed c. We have proven that the travelling wave solution profile and speed c
exist and are unique under conditions which are not restrictive in view of the physical properties encountered in
real solid propellants.

A numerical comparison has been conducted with a CFD code developed at ONERA, and the agreement
has been found to be very good for a broad range of parameter values, at least for a unitary Lewis. We have
shown that the relative error on c grows as the Lewis number Le changes, but the solution remains quantitatively
good for realistic value of Le. A comparison was also made with some of the main analytical models, and we
showed that semi-analytical model produced better results overall. Practically, the semi-analytical method is free
of any numerical error. This method can thus be a useful verification tool for CFD codes with simplified test cases.
Besides, the method always converges, hence it can be used to generate initial solutions for more detailed methods
that would otherwise struggle to converge.

This method can be employed to determine the various coefficients needed to compute the linear response
function to pressure fluctuations, by performing multiple simulations with slight variations of one parameter.

A few evolutions can be envisioned. More advanced pyrolysis laws can be used, as in [20]. It is also possible
to consider a distributed pyrolysis, i.e. the pyrolysis process is not concentrated at the surface but spread out inside
the solid. In-depth penetration of a radiative flux can also be added as a source term in the solid. Radiative fluxes
entirely absorbed at the surface and radiation from the solid can be directly integrated into the presented method,
by including them into the expression of S or ∆γ. Sensitivities of the burning rate c to P and T0 are still to be
investigated. We believe that such an approach also sets the proper framework for the stability analysis of the
stationary wave profile; this is out of the scope of the present paper but is the subject of our current work.
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