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Abstract
Mission planning for space prospecting missions is a complex undertaking that involves several phases,
variables, and systems. MARMOT, Multi-Agent Resource Mission Operations Tools, is an extensible,
open-source tool that allows operators to expand and improve current functionalities and automation ca-
pabilities of mission planning systems for extra-terrestrial operation by aiming to reduce the exhaustive
mental load accumulated by mission operators. This paper presents the first iteration of the tool that
provides homogeneous and heterogeneous multi-agent global trajectory planning and optimization sug-
gestions for different tasks and goals in a Lunar environment. The resulting tool leverages collaborative
action plans and optimization strategies for enhancing in-situ resource exploitation and discovery on the
Moon.

1. Introduction

In recent years, we have seen a major turning point in the development of Space exploration capabilities. Government
Space agencies are achieving great milestones in this NewSpace race by mixing and assisting commercial ventures. All
these advances, and humanity’s inherent hunger for adventure and exploration, are pushing forward the development
of the space sector in an exponential way, helping envision a near future with settlements on the Moon and Mars.
For this aspiration to come true, and establishing permanent presence in space, in-situ exploration, identification, and
prospecting of space resources is paramount to sustain human activities. Mining water, for example, will be essential
for life-support systems, and can, additionally, be split and used as rocket propellant. If carbon is found in water-ice, as
it’s believed to exist, it can be transformed into plastics that can be used to protect against radiation, and other minerals
can be targeted with the goal of construction.

Five years ago, NASA started the Resource Prospector (RP) mission[1]. This mission aims to prospect for volatiles
such as water-ice in polar regions of the Moon in order to demonstrate an In-Situ Resource Utilization (ISRU) capa-
bility. These resources must lay the foundations for space exploration. Nowadays, the NASA Frontier Development
Lab [13], is offering alternatives and solutions to many of the problems associated to the RP mission. NASA Fron-
tier Development Lab is an AI accelerator geared towards space applications. This program joins multidisciplinary
researchers working together to solve some of the most interesting problems in current space missions.

The authors, as a team, have put forward a stepping stone towards that goal in the form of MARMOT, or Multi-Agent
Resource Mission Operations Tools. MARMOT is an extensible, open-source tool that allows Earth operator to expand
the current functionality of mission planning systems for extra-terrestrial operation. The first iteration of the tool
provides heterogeneous multi-agent global planning optimization of environments for different tasks and goals. Future
iterations of the work will allow extensibility into other areas of machine intelligence and robotics, and further enhance
the goals of both public and private space operations.
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2. Prospecting Mission Overview

As explained before, the Resource Prospector (RP) mission aims to perform "In-Situ resource utilization" using a rover
on the Lunar surface. However, the inclusion of ISRU instruments on the rover increases the complexity of classical
navigation and exploration tasks. Thus, the process for controlling a rover during a prospecting mission is composed of
two Mission Control systems: the Mission Control located on Earth surface (MCoE) and the Mission Control located
on the rover vehicle (MCoR). The former, is the one managed by a mission team (human operators) facing a front-
end interface and selecting the best driving distances and areas using available information from rover sensors. As a
result of this process, they will command the rover to visit a new position or to perform ISRU. The latter is the one
deployed on the robot, and allows manual control, teleoperated by a human operator, and semi-autonomous control,
where the robot is running with partial supervision. The MCoR would be seen as the control unit for the localization,
navigation, and prospecting systems. The robot generates actions and gathers information from its sensors for relaying
to the MCoE. Nevertheless, current missions have associated with them several issues that may be abstracted into three
categories: 1) Moon to Earth communications and interactions with humans operators in the loop, 2) harshness and
unpredictability of the environment, and 3) single robot mission.

Given the Earth-Moon geometry, communication between a rover on the Moon and mission control on Earth is not
a straightforward process. The round trip communication latency for a mission on the Moon is significantly shorter
(varying between six seconds to over 25 seconds for RP) than Mars, which could expect a response time of 28 minutes
for a software ping or to perform a rover operation citeGordon:2012. This scenario discourages real-time command
and control. Thus, any action undergone by the rover is prepared and meditated by a team that decomposes each task
to fine-grain steps. The idea is to define decision cycles for providing near real-time command and control by means
of driving the rover using a waypoint approach [1].

The Moon’s environment [16] is composed of numerous impediments to simple operations which operators are accus-
tomed to on Earth. It has a solid-surface body made up of a rocky surface covered with regolith. Consequently, the
regolith material and spectral properties make traversal difficult using conventional platforms. Regolith covering the
surface varies between 3 meters and 20 meters. The Moon presents[4] a crust size of 60 to 100 kilometers thick. In
addition, the Moon has other properties[3] such as dust constrains, thermal properties, and vacuum conditions which
make operation difficult.

Figure 1: Overview of a mission control. Expected goals (supported on AI) vs current scenarios (supported on Earth
surface mission control).

In the RP mission, the single rover lacks autonomy, traversal versatility, communication capabilities and characteristics
for reaching the goal in an expected amount of time. These challenges can be significantly reduced by multi-robot
operations, which can improve mission efficacy and lower risks by autonomously coordinating the agents. Despite
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continual advances in the field, there are still numerous challenges to reduce the complexities associated with the
coordination of multi-robot systems and mission planning strategies, which motivates further research.

This project proposes a set of tools capable of enhancing the planning capabilities of the Mission Control Team on
Earth during the decision making process of prospecting and exploration missions. In addition to providing operators
important information, the system assists controlling a Multi-agent configuration of rovers. The first iteration of devel-
opment presents a mission generator that provides alternatives to a prospecting mission on the Moon. Figure 1 presents
the overview of our project, where this project is contributing and current status of a mission definition.

3. Mission Generator: AI Assistance

Before explaining the MARMOT solution, it is necessary to identify the main features associated to MCoE and MCoR.
The Moon context clearly bounds the possibilities available for offering a guidance system for Mission Control on
Earth. In addition, current information from rover sensors and satellites limits the information available to make the
best decision. Thus, this project initially selects three main elements: 1) Cost Map generation, 2) Waypoint Generation
and Guidance, and 3) Multi-agent strategy.

3.1 Cost Map Generation

To produce a usable cost map, a blank grid-graph containing vertices and edges the size of the operational area is
generated. Next, each vertex is associated with it information about the environment. The information is used to
generate a cost associated with that vertex for eventual use in path planning strategies. For example, the distance of
a vertex to an obstacle is assigned a low value if the vertex is far from obstacle, but a high value is assigned if it is
closer. The values given to vertices on the grid-graph are taken from fusing multiple maps in layers of the same area
containing different information [18][7]. In the case of a Lunar environment, the fusion entailed layering terrain, slope,
shadows, and communication maps.

3.1.1 Lunar Terrain and Slope Maps

Currently, there are no publicly available high-resolution, finely-detailed maps of the Lunar surface. A terrain map must
thus be made utilizing information that is publicly available. Moon Trek [17], a website hosting publicly available Moon
data organized by NASA JPL, provides easy and free access to Lunar surface data. We focused our efforts on the crater
Hermite A located on the Moon’s North Pole since this was the tentative operational area of the Resource Prospector
[19] mission. Inspired by images from the Lunar Orbiter Laser Altimeter on board the Lunar Reconnaissance Orbiter
(LRO) of the area, an artificial Lunar surface was created with the help of a 3D open source creation suite, Blender
[12].

From the LRO mission, Digital Elevation Models (DEM) and other surface information provided approximate values
of the Moon’s topological surface, which was used for creating mock Lunar area called the terrain-slope map. Figure
2 is one such example of real data topological surface where each pixel represents terrain inclination. In the image,
black pixels correspond to flat surfaces while white pixels are steep slopes. The grayscale variations in-between black
and white scale from shallow (dark grey pixels) to steep (light grey pixels) surfaces. Figure 3 demonstrates the original
image DEM converted and modified to a similar artificial surface using Blender.

3.1.2 Shadow Map

The 1.5◦ tilted position of the Moon causes different shadow periods on surface. Near the poles, some craters have local
depressions in continual permanent shadow while, on the other hand, we can find craters with the outer edge remaining
sunlit throughout the year. There are identified four different areas on Lunar surface: Sunlit, Short Duration Sunlit,
Shadowed Near Sunlit, and Permanently Shadowed Regions (PSR). It is important to highlight that data obtained
by Lunar Reconnaissance Orbiter suggest it is possible to find thick ice and other volatiles on the top 1-2 meters of
regolith on shadowed regions at the lunar poles. Those are thus regions of interest for the prospecting missions, and,
for this reason, current missions to the Moon require solar power for energy. A rover caught in a shadowed region can
have a detrimental effect on a mission, which include the inability to recharge and having to endure large deviations in
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Figure 2: Terrain slope representing terrain inclination at each pixel.

Figure 3: Moon surface digital elevation model DEM (left) and a generated view in Blender from this DEM (right).

temperatures. Data has shown that temperatures in shadowed regions are as low as −250◦C. Under these circumstances,
the shadow map layer consists of marking areas that are consistently covered in shadow. However, as explained earlier
these shadows change throughout time. A path obtained taking into account the lunar shadow layout at a certain period
of time could be dangerous several hours later.

Using Blender, a simulated Moon cycle can provide the needed shadow information for a potential site as demonstrated
and expanded upon in Figure 4. The figure provides a great visualization of the variability in surface illumination over
time. The map is then used as a basis for generating a cost attributed to shadow coverage. Areas that are more
frequently covered in shadow are given a higher costs, while areas with little shadow coverage are given lower costs.
This translates to a shadow map that can assist a rover in navigating away from areas that are deemed high-risk due to
the prevalence of shadows.

3.1.3 Communications Map

During a Lunar mission, direct communication with Earth is required to oversee and control rover operations. However,
given certain rover hardware and autonomy limitations, including issues with geographical location, maintaining direct
communication is not consistently achievable. Improving the communication hardware available to a rover is a simple
solution, yet this is economically infeasible for many small space companies or research initiatives. Therefore, we
explore indirect communication methods using multiple agents as a possible solution. For example, a stationary lander
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Figure 4: Shadow shapes on Moon surface greatly change with respect to moon-sun angle along the moon cycle (28
days). The images show the evolution every 44 hours. Brighter areas are those with exposure to the sun, while the
darker areas are occluded by terrain into darkness.

acting as an intermediary between a rover and Earth. Pal et al.[20] analyzed this type of multi-agent scenario with
assumed perfect communication between the lander and rover. This, however, does not accurately represent the com-
munication connection strength between a lander and rover on a real Lunar mission. Multiple factors such as the Moon
surface topology, distance-dependent constraints, and antenna intrinsic features [2] significantly complicate communi-
cation in this configuration. Additionally, certain operations require the rover to explore areas where communication is
completely hindered (such as a crater), and necessitates the assistance of a relay rover to maintain connection.

Figure 5: Three communications models generated in Blender (ray tracing) showing scientific rover (left), relay rover
(middle), and lander (right) communication regions. The scale of worst to best communication coverage and strength.

A communication map is thus derived from modeling these constraints and simulating them in a Blender environment.
Figure 5 shows a Blender generated communication map. The figure shows three images with a representation of the
strength and coverage of rover transmission based on its location. The values scale from black (worst) to white (best)
for each pixel in the image. The fusion of thse single communication models produces the complete communication
region. Communication cost maps generated from this image contain values analogous to the image’s grayscale values.
Figure 6 is obtained as a result of this process.

3.2 Waypoint Generation and Guidance

It is necessary to locate and select those scientifically interesting targets which could be great sources of information to
the missions. Traversal between these targets –points-of-interest– is performed by a navigation system. This navigation
system provides the mechanisms to move the rover on the Moon surface between two or more points. Current process
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Figure 6: Total communication coverage.The grayscale of worst to best communication coverage and strength.

includes a team on Earth selecting the region of interest that the rover should visit. This process is supported on several
sources of information such as local images, information from Lunar Reconnaissance Orbiter, and rover sensors.

3.2.1 Points-of-Interest Selection

Since our work was modeled on prospection tasks, and more specifically the Resource Prospector mission, points-of-
interest (POI) for a Lunar operation consisted of locating the presence of water and predicting the thermal stability of
ice with respect to the depth of the Lunar surface. According to Colaprete[10], these Resource Target Regions (RTRs)
are defined as four regions. Dry regions where temperatures are too warm for ice to be stable. Deep regions where
a stable layer of ice is expected between 50-100 cm from the surface. Shallow regions where a stable layer of ice is
expected 50 cm from the surface. Surface regions where surface ice is expected, which is typically in a PSR location.

3.2.2 Opportunistic Path Planning

Current approaches for solving these challenges are based on two main methods [9]: blind drive, where Earth operator
defines the robot path and the rover follows that route with no identification of hazardous conditions or new points
of interest; autonomous navigation, where the rover identifies local threats such as non-traversable rocks or shadowed
regions surrounding them on its path to the target location. In the case of Lunar prospecting, opportunistic path planning
for multiple agents consists of selecting points-of-interest that will yield the greatest amount of scientific return while
maintaining constant communication between the agents. Attempting to solve this requires an extensive state-action
space due to discretizing states into number of agents, number of points-of-interest, and path proposals.

One can reduce this space by splitting the problem into two parts. The first selects and manages the relation of the
multiple agents and the points-of-interest by using a brute-force traveling salesman solver as specified by Gutin and
Punnen [14]. An A∗ algorithm is then used to establish an approximated best traversable route between 2 or n points-
of-interest. The second part takes the approximated paths for each agent and uses a version of the Distributed Path
Consensus (DPC) algorithm [5] to augment the traversal paths for maintained communication between the agents.

3.3 Multi-Agent Strategy

As briefly mentioned in the Communication Map section, a multi-agent system can significantly expand the capabilities
of a Lunar prospecting and exploration mission, yet this paradigm comes with challenges [11]. Agents in this setting
lack full-autonomy and are remotely controlled by human operators on Earth. Increasing the number of agents without
any additional autonomy concurrently increases human operator burden. The work presented in this paper provides a
new multi-agent automation strategy to make multi-agent missions more viable for future missions. Table 1 presents
a general overview of the pros and cons of the mission using a single robot or deploying a multi-agent cooperative
configuration.
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For a prospecting mission, we examined cooperative strategies that provided extended, reliable communication on the
Lunar surface because agents may enter RTRs that limit communication. The two possible agent configurations are
expanded upon in following subsections. The configurations proposed in this research are based on three different
agents with different physical characteristics and roles:

• Lander spacecraft: This agent serves multiple roles during a Lunar mission. At the beginning of the mission,
the Lander acts as the payload module containing the rovers for arrival on the Lunar surface. The lander is
strategically placed on higher elevation to allow consistent, unfettered communication with Earth as its second
role.

• Scientific rover: A robotic rover capable of every possible mission defined scientific experiment. It communi-
cates directly with Earth, or by intermediaries such as a Relay rover or a Lander spacecraft.

• Relay rover: Unlike the Scientific rover, this rover is primarily tasked with assisting other rovers maintain
communication with Earth. These rovers are less capable of doing thorough scientific experiments, but may be
equipped with some basic experiment support. Some descriptions have the relay rover solely act as a communi-
cation relay and have no scientific capabilities.

3.3.1 Single-class configuration

A lander spacecraft on the Lunar surface deploys two Scientific rovers of the same type. Both rovers have the same
capabilities, but are more conservative in their task allocation so as to maintain communication to the lander. If a rover
must enter an area with little possibility of communication with the lander (such as a crater or a low elevation PSR),
the other scientific rover may act as a relay to maintain communication.

3.3.2 Multi-class configuration

A lander spacecraft on the Lunar surface deploys two rovers: a scientific and a relay rover. The lander acts as a relay
to communication back to Earth. The scientific rover undergoes the necessary scientific tasks for the mission while the
relay rover maintains a communication connection between the scientific rover and the lander. Additionally, the relay
rover may provide limited secondary scientific task capabilities.

4. MARMOT

Multi-Agent Resource Mission Operations Tool (MARMOT) was developed to help create better automation solutions
to multi-agent problems. Specifically, MARMOT gives users the ability to define an optimized set of trajectories to
enhance mission performance for exploration and/or prospecting tasks.

4.1 Pipeline

From a macro-abstract view, MARMOT acts as a simple tool capable of easy integration in existing backend systems.
Building a mission pipeline utilizing MARMOT begins with by providing databases (maps and points-of-interests
related to the mission), mission constraints, and operator preferences as detailed in Figure 7. The latter two are user-
defined and contain required mission information to further tune and modify the generated cost map. For example,
mission constraints such as the mission-operation time window (date and length), which will be used to generate the
relevant time-dependent version of the shadow maps.

Once the data of each map is layered and fused to create the overall terrain cost map, MARMOT selects POIs to
integrate into said map. Finally, MARMOT uses the master cost map to generate the multi-agent trajectories by
deploying built-in path planning algorithms.
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Table 1: Prospecting mission tasks using Single-robot (SR) configuration vs Multi-robot (MR) configuration
(SC:Single-class; MC:Multi-class)

Strategy Pros Cons

General Overview
SR Cost, control No backup, communications

range
MR-SC Specialized tasks, Backup

rover
Cost, Coordination, Payload

MR-MC Specialized tasks, Reduced
costs (compared to SC),
Payload

Coordination, No backup
rover

Resource Prospecting Task Recommended Comments
Visit PSR MR-SC It is necessary to maintain communication flow using two

scientific robots. Possibility of continuing mission in case
of lost robot in PSR. It increases the cost. Similar robots
contain the same control strategy.

Explore regions MR-MC Relay rover could extend the range of the explorable re-
gion.

Maximize the scientific results MR-SC Two scientific rovers could perform tasks in parallel
while simultaneously offering communication extension.

Deploy infrastructures MR-SC Coordinated tasks are simplified when the same robot is
being used. When the same robot is a scientific it in-
creases the cost and dangers over the platform.

Rescue robots MR-MC This would require the addition of necessary tools for res-
cue tasks.

Extend communications range MR-MC A specialized rover for communication will be a right op-
tion. Minimal scientific rover with extended comms will
decrease costs.

Figure 7: Layout of data pipeline and algorithm structure.

4.2 Software Package Description

MARMOT is a software deployment that aims to help human operators. It consists of three stand-alone support
packages, Graphery, Mapstery, and Utils. The first two packages were built separately from MARMOT to act as
dependencies and for utilization in other projects. Graphery performs general graph-theoretic network graphing, while
Mapstery generates cost maps. The Utils component of MARMOT is not a separate package, but it comprises a set of
generic tools for manipulating general data that companies and researchers may find useful.

Our aim in creating these packages tools was broad generalizability and extensibility with other open-source projects,
such as QGIS [21], who would like to employ similar approaches for multi-agent missions. Additionally, MARMOT
is built from many open source libraries such as gdal from OSGeo [24], NetworkX [15], OpenCV [8], and NumPy [23].
Figure 8 provides a basic overview of MARMOT’s software structure.
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Figure 8: MARMOT presents three main components Mapstery: Map fusion and cost map generation, Graphery:
Graph generation and path planning, Utils: general purpose tools for data formalization and manipulation

Figure 9: Using a Digital Elevation Model (DEM), viewed in Blender on the left, multiple cost maps can be generated.

4.3 Mapstery

Figure 9 presents an illustration of how a DEM is used to make the slope, shadow, and communication maps. Before the
layered cost map is generated, mission objectives or preferences may require certain maps to take preference over other
maps. The user weighing the information provided by each map can result in different path planning strategies. For
instance, if shadowed regions are to be avoided at all cost, a higher weight is associated with the shadow map relative
to the communication and slope maps. The layered and modified cost map is thus visualized as a linear combination
of individual maps,

CostMap = α · Mshadows + β · Mslope + γ · Mcomm (1)

where α, β, and γ are the user-defined weights, and Mshadows, Mslope, and Mcomm are the respective map associated to
each weight.

4.4 Graphery

Creation of grid-graphs are done primarily through the Graphery Python package. Given a requisite map size, Graphery
will generate the appropriate size blank grid-graph for use with the layered cost map provided by Mapstery. The graph
allows users to modify or create certain attributes (or costs) on-the-fly.
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4.5 Utils

Additionally, utility functions were created to ease MARMOT’s use in existing codebases. Waypoints, tasks, and other
mission primitives are loaded using JSON format files. Visualization tools were developed for users who wish to
visualize the changes in non-web frontend formats using matplotlib[22].

4.6 Coordination and Trajectory Proposals

4.6.1 Point-of-Interest Selection

For a given Lunar mission, numerous points-of-interest exist for exploration; however, very limited operation time by
rovers make assessing each of these points intractable. With MARMOT, we develop a means of generating a visit order
of waypoints for a subsets of POIs that are explorable given mission constraints. The geographical coordinates of a
POIs are input into a list of coordinate-lists, where POIs of equal visit importance reside together. Each coordinate-list
constitutes a strata of importance for the mission. The algorithm then selects one coordinate from each coordinate-list
to generate a rover’s path, up to N user-defined points.

Additionally, the algorithm optimizes the selection based on a distance function. The more POIs the rover can assess
in a shorter distance, the better the path is considered. Numerous permutations of the paths are provided to enable the
user to make the final selection. Additionally, variations of this algorithm were provided to allow start or end points, or
use of different distance functions i.e. Euclidean distance or A∗ search using the fused cost-maps mentioned earlier.

4.6.2 Multi-agent Optimal Path Planning and Synchronization

MARMOT utilizes staple graph search algorithms such as A∗ search to effectively generate path trajectories over the
terrain for each agent. However, the system’s capabilities were extended to use more modern search algorithms to
effectively produce optimal trajectories while still being respectful of mission constraints. Distributed Path Consensus
(DPC) [5] and its supplementary work, Distributed Path Consensus with Tasks (DPCT) [6], are a modified form of A∗

search that provides the ability to optimize each agent’s search path by iteratively applying soft constraints on their
individual paths while satisfying a user-defined mutli-agent constraint.

In particular, this user-defined constraint is a cost function added to the A∗ algorithm’s heuristic function. The cost
function produces a corrective penalty or reward to each iteration of this modified A∗ search. Moreover, an incremental
weight is applied to the cost function to improve its efficacy after each subsequent path search. In the Lunar prospection
scenario, maintaining communication between rovers is crucial to a successful mission. One can define an acceptable
distance rovers must maintain during traversal, and each iteration of the algorithm will result in a path which maintains
the distance constraint. Figure 10 show the first and last iteration for two agents using the DPC algorithm.

5. Experimental Study

To illustrate the capabilities of MARMOT, an initial mission scenario was formulated using a three agent configuration
consisting of a lander, a relay rover, and a scientific rover. Operators at mission control direct the science rover to
initiate a prospection task within a PSR. Moreover, this region happens to be a within crater making communication to
the lander impossible. The relay rover will thus act as the intermediary to establish proper communication link between
the lander and the scientific rover.

Figure 11 presents the above example with trajectories generated by MARMOT. In this case, the overall terrain cost
map favored avoiding the shadow regions by placing a higher weight on the individual shadow map before MARMOT
fused them with the other maps. The path planning generated by MARMOT is an A∗ heuristic search algorithm that
avoids shadows while maintaining communication.

Figure 12 presents a slightly modified version of the mission scenario, but less weight is applied to the shadow map.
Additionally, the path planning generated by MARMOT is an opportunistic solution. This algorithm adds intermediary
points-of-interest for a relay and scientific rover to target as they progress towards their end goal. Once those points-
of-interests are chosen, the A∗ search algorithm is used to calculate the best path between the waypoints.
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Figure 10: DPCT Applied to Static and Dynamic Agents. Applying soft penalty constraints allow path genera-
tion/modification that maintain constant communication between a science and relay rover as they proceed to different
tasks.

Figure 11: Case 1: Relay rover extends lander communication along the crater border while science rover explores a
point-of-interest in a crater without communications to the lander. A fused cost map is used for trajectory calculation.

6. Conclusion and Future work

MARMOT’s purpose is to build a set of open source tools for small space companies and researchers interested in
developing space exploration tools for multi-agent mission planning operations. MARMOT provides a framework for
users to increase the automation capabilities of multi-agent operations in space exploration and prospecting missions.
Users can adjust to various operation and mission requirements via custom map and waypoint input. By combining cost
map fusion, waypoint prioritization, and multi-agent trajectory planning, the current iteration of the work enables global
planning for multi-agent systems. Future work seeks to give MARMOT local planning capabilities where sensory
input and environmental feedback allows agents to retain more complex information during exploration. Furthermore,
a comprehensive local or global simulation environment would lay groundwork for development of algorithms that
utilize modern machine learning paradigms such as reinforcement learning and object identification. MARMOT’s
subsequent development would thus enable a higher degree of automation from the global to local scale.
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Figure 12: Case 2: The rovers goals are the same as in Case 1. A set of traversable points-of-interest are suggested for
extending the prospecting mission.
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