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Abstract

Laminar-turbulent transition has been investigated in a shock tunnel at Mach number 5. Heat flux
distributions on the cone surface have been obtained using temperature sensitive paint. For the larger
nosetip bluntness it is found that thin longitudinal structures are formed in the nosetip region. For the
smaller nosetips at the same freestream parameters the structures are not observed. The earliest
observed structures are formed at the boundary layer edge Mach number lower than 0.4. At some
distance downstream they turn into turbulent wedges. It is shown that the structures location is related
to surface roughness rather than freestream disturbances.

1. Introduction

The present investigation is devoted to laminar-turbulent transition in hypersonic flow over slender blunt cone.
Numerous experimental data on this topic are mainly limited to one of the following: relatively small nosetip
bluntness, artificial surface roughness or measurements using discrete sensors. Among the rest of the data, most of
which are summarized in [1], there are observations of transition on a “smooth” cone (or nosetip) which has no
common theoretical [2-5] or physical [6] explanation up to date. Temperature sensitive paints technique, developed
in the recent years, turned out to be much more informative tool than discrete sensors. The purpose of present work is
to extend our previous investigations [7,8] to a higher nosetip bluntness.

2. Experimental set-up

The experiments have been carried out in the UT-1M shock tunnel operating by the Ludwieg scheme [9] at Mach
number 5 and freestream unit Reynolds number Re,, up to 9x10” per meter. The model is 6.5° half-angle cone with
interchangeable sphere-conical nosetips. The length of the model without nosetip is about 330 mm. Nosetip radius
values R =5, 10, 15, 20 and 25 mm. External surfaces of the main model part (i.e. cone frustum) and nosetips are
made from AG-4 material. Heat flux distributions over the model surface have been obtained using temperature
sensitive paint [10]. Runs have been carried out varying nosetips as well as unit Reynolds number in account of
pressure.

3. Results
The test matrix is shown in Table 1.
3.1 Cone frustum

Figure 1 shows distributions of measured relative intensity of paint luminescence in arbitrary units for the case of
R =5 mm nosetip. Range of the color scale is different for each figure to emphasize flow pattern in each case. The
red and orange zones correspond to peak heating due to laminar-turbulent transition. The blue and purple zones are
either laminar or transitional. Transition onset locations will be analyzed quantitatively later.
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The distance between markers on cone frustum (63 mm) is shown in the capacity of a spatial scale; note, that the
distances between markers on the nosetips in some cases are different from 63 mm. These markers are visible by
naked eye points with known coordinates. They are specially applied to the model surface to be able to map two-
dimensional camera images to each other. Subsequently their coordinates are used to map a resulted image to three-
dimensional computer cone geometry.

At Re,,=1.71 x 10" m™ only the very beginning of transition is observed near model tail. At Re,, =3.93 x 10’ m
there is clearly transition end. With further increasing Reynolds number transition end moves upstream. There is
notable angular asymmetry in the transition zone in contrast to turbulent zone.

Table 1: Test matrix

Run Total Total R, Run Total Total R,
number  pressure, ata  temperature, K mm number pressure, ata  temperature, K mm
6976 60.20 466.4 25 7003 14.24 465.3 20
6977 49.02 461.6 25 7005 22.44 463.9 15
6978 38.31 466.5 25 7008 58.75 468.4 15
6979 26.73 468.5 25 7009 50.88 465.7 15
6980 13.28 464.8 25 7010 42.72 461.5 15
6993 42.46 469.7 5 7011 11.09 466.9 15
6994 27.30 463.5 5 7013 42.32 463.7 10
6995 11.85 462.1 5 7014 27.53 462.0 10
6996 63.01 463.1 5 7015 8.15 466.3 10
6998 50.08 468.4 5 7016 60.64 463.3 10
6999 59.33 467.5 20 7017 50.01 463.9 10
7000 52.06 463.0 20 7020 42.29 464.2 25
7001 37.97 465.0 20 7023 43.03 464.5 25

7002 27.70 468.9 20

Figure 2 shows the results for R = 10 mm. At Re,,=1.16 x 10" m" whole visible flow region is laminar. As in the
case of R =5 mm nosetip, the rest four runs show upstream transition movement with increasing Reynolds number
as well as asymmetry of transition zone in contrast to turbulent zone.

Figure 3 shows results for R = 15 mm. At Re,, = 6.20x10" m™ thin longitudinal streak is visible between the spherical
nosetip part and the transition zone near the middle model generatrix. At Re, =7.27x10" m™ this streak is at the
same location while at least two similar streaks emerged. These new streaks turn into turbulent wedges at some
distance from the nosetip while the older one does not. At Re,, = 8.32x10" m™ all three turn into turbulent wedges.
Downstream the wedges spread, merge with each other and finally occupy the whole visible model surface. Thus, in
this case transition on the whole visible model surface is due to the formation and instability of these three streaks.
The results for R =20 and 25 mm, shown on Figures 4 and 5, are qualitatively similar to the case R = 15 mm. For the
lowest Reynolds number whole visible model surface is laminar while for the highest Reynolds number transition to
turbulence is determined by streaks. For the intermediate Reynolds number and R =20 mm it is hard to say whether
streaks dominate over other transition mechanisms or not, like on Figure 5,b) and 5.c). However for R =25 mm all
observed turbulence is clearly due to streaks.

Note that a streak, emerged on the nosetip, could resist to transformation into turbulent wedge at a quite long
distance — up to 15 nose radiuses (Figure 6,b)).
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~one frustum nosetip

a) Run 6995, Re,, = 1.71x107 1/m;

b) run 6994, Re,, = 3.93x10" 1/m;

e) run 6996, Re,, = 9.09x10” 1/m.

Figure 1: Distributions of relative luminescence intensity over cone surface. R =5 mm. Flow direction is from the
right to the left.
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a) Run 7015, Re,, = 1.16x107 1/m;

b) run 7014, Re,. = 3.99x10" 1/m;

¢) run 7013, Re,, = 6.09x107 1/m;

d) run 7017, Re,, = 7.19x10" 1/m;

e) run 7016, Re,, = 8.74x10” 1/m.

Figure 2: Distributions of relative luminescence intensity over cone surface. R = 10 mm.
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a) Run 7011, Re,, = 1.58x107 1/m;

b) run 7005, Re,, = 3.23x10" 1/m;

¢) run 7010, Re,, = 6.20x107 1/m;

e) run 7008, Re,, = 8.32x10” 1/m.

Figure 3: Distributions of relative luminescence intensity over cone surface. R = 15 mm
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a) Run 7003, Re,, =2.04x107 1/m;

b) run 7002, Re,, = 3.92x10" 1/m;

e) run 6999, Re,, = 8.43x10” 1/m.

Figure 4: Distributions of relative luminescence intensity over cone surface. R = 20 mm
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a) Run 6980, Re,, = 1.90x107 1/m;

b) run 6979, Re,, = 3.78x10" 1/m;

¢) run 6978, Re,, = 5.46x107 1/m;

d) run 6977, Re,, = 7.11x107 1/m;

e) run 6976, Re,, = 8.58x10” 1/m.

Figure 5: Distributions of relative luminescence intensity over cone surface. R =25 mm.
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3.2 Cone nosetip

In the end of the series two additional runs have been done. Before their conduction the cone has been shifted
downstream so as cameras to view the nosetip rather than the frustum. On the nosetip R = 25 mm additional markers
have been added for more accurate mapping of images. Before the second run, the cone has been rotated around its
axis on 30°. The results are presented on Figure 6 and the new markers location is highlighted.

First, comparing Figure 6,a) and b) one can see that streaks rotated “together with the model”. Consequently, their
location is completely determined by the model properties (probably, distribution of roughness) rather than
freestream disturbances. Unfortunately in the present investigation, roughness of the nosetip has not been measured
due to limitations of available instrumentation. The model has been carefully polished before sensitive paint has been
applied onto it. Tactile and visual examination revealed no observable local roughness, so one can estimate it less
than 20 um. Experiments with the same model and polished aluminium nosetips (their roughness will be measured)
are in preparation at the moment.

Second, new markers are located at 20-25° from stagnation point depending on concrete marker (this uncertainty is
due to they have been applied by hand without using precise instrumentation to avoid harming already applied paint;
they have been excluded from two-to-three-dimensional images mapping, and have been used only for two-to-two-
dimensional mapping, so that the uncertainty has no effect on final result.). Note that some streaks clearly originate
somewhat upstream from the new markers. Calculation show that boundary layer edge Mach number at 20-25° from
stagnation point is about 0.4. So, streaks can originate far upstream of sonic line, which is about 41° from stagnation
point according to calculation.

Third, looking at, for example, Figure 6,b), one may naturally propose that the streak is produced by markers, since it
goes right upon raw of them. It is possible if a marker is large enough and is working like isolated surface roughness.
However on Figure 7 streaks 1 and 3 are located clearly between markers. Thus, markers are not necessary for
occurrence of streaks.

marker
spacing 30°
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Figure 6: Streaks in nosetip region. R =25 mm, flow from the left to the right. a) run 7020, Re .z =5.46x 10°; b) run
7023, Re.g = 5.55%10°, the model is rotated around its axis on 30° counterclockwise to the flow relatively to the run
7020.

Similar streaks have been observed for example in [11-15]. In [11] they have been observed at relatively small
roughness — 6.7 um (Figure 10,a) from [11]). Figure 12 from [11] demonstrates non-monotone influence of
roughness height on transition in the range of roughness size 4.8-6.7 um. It is in agreement with the data [16] where
increasing roughness led to decrease of heating on some part of sphere as well as with [17], where short review on
influence of roughness on transition is given. In [12] they have been observed on “smooth” model. Though
measurements of its roughness have not been presented, it should be less than that of the 230-mesh model, i.e.
17 pm. In [18] it is shown that depending on mutual location of two discrete roughness elements, disturbance,
created by the upstream element, can stabilize as well as produce turbulent wedge. In [19] three identical models
differing only by roughness size and shape has been tested in flight — the furthest transition has been observed on the
most smooth model, though transition has occurred earlier on the model with mid-size roughness, than on the model
with the largest roughness. In [20] transition has occurred upstream of the sonic point for R = 50.8 mm while flow
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has been laminar for R=38.1 mm nosetip (both have had 0.05 pm roughness). According to [21], changing roughness
height roughly from 0.5 to 0.05 pum significantly delayed transition.

In [22-24] significant influence of dust particles in freestream on model roughness and transition is discussed.
Usually roughness is measured before experiments therefore actual roughness during experiments can significantly
differ from reported value. The problem becomes even more complicated because usually reported mean height
value does not adequately characterize roughness since from Figure 6 it seems that namely local peaks or tips are
responsible for streaks. In view of above short review, it seems that though classical correlation parameters (like

Rey, PANT and variations) seem to work good for relatively large roughness [25], combination of relatively small
roughness with large bluntness and probably dust still deserves investigation.

3.3 Transition location

Transition beginning locations have been determined for each run on each of five model generatrixes: one locating
along the middle of visible model part and others locating at + 22.5 and + 45° from it. Transition beginning location

has been determined by the intersection of lines, corresponding to laminar and transitional flows (Figure 7).
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Figure 7: Heat flux distributions along the same generatrix at various Reynolds numbers; a) R = 10 mm, generatrix
+45°; green points — Re,, g = 1.16x 10°, red — 3.99, violet — 6.09, blue — 7.19, orange — 8.74; b) R = 25 mm, generatrix
+22.5°; green points — Re,or = 4.76x 10°, red — 9.46, violet —13.65, blue — 17.76, orange — 21.46. Arrows designate
determined transition beginning locations.

To do this, one could extrapolate laminar part of the distribution for a concrete run downstream to the point where it
would intersect with transitional line from the same run. However, due to very long transitional zones at large
bluntness [26] and data scatter, this approach has showed oneself not very reliable, because it is hard to pick out the
laminar region when looking at single run. Instead, in the present paper heat flux distributions at different Reynolds
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number, other things being equal, are superimposed to each other in terms of StXRew,RO‘S, St — Stanton number [10],
Reéxr = PostlcR/Pos, Pooy Uy Hoo — freestream density, velocity and dynamic viscosity correspondingly.. This way, as is
seen on Figure 7, laminar parts of distributions are in excellent agreement with each other. Transition is assigned at
intersection of transitional curve with laminar curve from the run at minimal Reynolds number.

On Figure 7,a) the small local peak heating at x =~ 100 mm is observed for all curves, i.e. it does not depend on
Reynolds number. This means that the peak is due to local irregularity of the model thermal properties rather than a
flow feature or transition, as one may suppose when looking at single curve.

On Figure 7,b) both the red and green datasets corresponds to laminar flow, so transition is designated at intersection
with the red line rather than the green line, due to less scatter.

The resulting Reynolds numbers and correlation [27] are shown on Figure 8.
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Figure 8: Transition beginning location Reynolds number in the present investigation (M., = 5). Filled symbols —
streaks are not observed, open symbols — streaks are observed. Triangle — laminar flow till the end of the model
(Figure 6,b)). Solid line — correlation [27].

Transition in the run 6995 (Figure 1,a) is excluded from Figure 8§ since there is only the very beginning of transition
visible, therefore one cannot draw “transitional” line correctly. The correlation is used of the form
Re, . = 78825,5 K*64667 \where Reyxt = PolloXe/ e, X¢ — axial distance from stagnation point to transition beginning
location, K = (Reoo,R)O'5 x M.,> x Sin(0), M., freestream Mach, 6 — cone half angle.

To better track early nosetip transition, data on Figure 8 are shown using s-coordinate rather than x, where s —
distance from stagnation point along model surface (wetted length). Re, « values given by the correlation have been
converted to Re, s, using geometrical relations. Actually there are two solid lines on the Figure 8 — they correspond
to R =5 and 25 mm. One can see that they coincident with each other.

Data obtained are in good agreement with the correlation up to Re,r =5 x 10°. Further up to Re, g =8 x 10° they
deviate from the correlation though streaks are not observed (however they are not necessarily absent). It is similar to
[8]. At Re, higher than= 1.1 x 10° transition is always due to streaks giving Re, s ~24 x 10° depending on
generatrix choice. This value does not change at Re,,x ~ 1.1-2.2 x 10°.

Data [28] have been obtained in the same shock tunnel the present investigation, however with different nozzle, flow
temperature and model itself. At that model roughness before experiments have been probably similar since model
preparation technique have been the same. Both datasets demonstrate occurrence of turbulent wedges produced by
streaks . Original observations have been re-processed in the frame of the present investigation to exclude streak-
dominated transition. The procedure is as follows. If there is possible for a given run to select a generatrix locating
outside of turbulent wedges, then transition is determined by heat flux distribution along this generatrix, similar to
[8]. Otherwise, the run is omitted. Transition location has been assigned at the beginning of rapid heat flux growth.
The results are presented on Figure 9. Re-processed data agree with the correlation satisfactorily (though
systematically demonstrate somewhat earlier transition), except three points, for which distributions of relative
luminescence intensity is shown as on Figures 1-5. For the top right image the very beginning of transition is near
the model end. If the model have been longer, transition would be assigned to the point of more rapid growth of heat
flux, which would be somewhat downstream. This situation is similar to Figure 1,a). For the other two images
hypothetically reversal occurs without streaks either streaks are not visible due do data noisiness.

10
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In addition, data [29], taken from figure 1,a) from [30], are shown on Figure 9. They systematically demonstrate
somewhat later transition, then than according to the correlation (until reversal occurs). Probably it is due to nosetip
polishing before each run, rather than low level of noise, since FDL Mach 6 tunnel is not considered “quiet” [31].
Data, tabulated in [29] have been incorrectly used in [1] in comparison with the correlation — when calculating
parameter K nosetip radius value have been supposed 3 mm while correct value is 1.5 mm. Correct comparison is
shown on Figure 9.
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Figure 9: Re-processing (red crosses) of data [28] (M,, = 6); solid purple line — correlation [27]; blue diamonds — data

[29].
4. Conclusions

At Reynolds number based on nosetip radius and freestream parameters Re.,z higher than roughly 9 x 10° thin
longitudinal structures (streaks) are formed in the nosetip region, analogous to [11-15]. The earliest observed streaks
are formed at the boundary layer edge Mach number lower than 0.4. At some distance downstream they turn into
turbulent wedges. This distance decreases as Reynolds number increases. It is shown that streak location are related
to surface roughness rather than freestream disturbances.

Data obtained are in good agreement with the correlation [27] up to Re,x = 5 x 10°. Further up to Re,r =~ 8 x 10’
they somewhat deviate from the correlation though streaks are not observed (however they are not necessarily
absent). It is similar to [8]. At Re, g higher than~=1.1 x 10° transition is always due to streaks giving transition
beginning Reynolds number Re,, s = 2—4 x 10°. This value does not change at Re,r~=1.1-2.2 x 10°.

Data [28] have been re-processed to separate streak-dominated transition. Almost all originally reported data [28]
corresponding to transition reversal regime are due to streaks. When such points are excluded, data [28] are in fair
agreement with the correlation, though systematically demonstrate somewhat earlier transition.

Data [29] show somewhat later transition than correlation [27] (until reversal occurs), though agreement is fair.
Hypothetically this is due to polishing of the model before each run rather than low level of noise, since FDL Mach 6
tunnel is not considered “quiet” [31].

Experiments with the same model and polished aluminium nosetips are in preparation.
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