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Abstract
This paper describes a Cooperative Control Law (CCL) with robust adaptive command and control algo-
rithms for close formation flying of highly heterogeneous manned or unmanned assets (receivers) within
the scope of Automatic Air to Air Refuelling (A3R) operations. The three main layers of the proposed
CCL providing adaptive guidance, consensus and collision avoidance functionalities are described and
formal stability demonstrations using Lyapunov theory are presented. Maturity and performance of the
proposed algorithms is assessed via simulations of A3R operations. Results and conclusions are presented
as well as some indications for future developments.

1. Introduction

A3R is a complex operation involving a set of heterogeneous manned and unmanned aircraft flying in close formation
before, during and after the fuel transfer. Throughout these phases, trajectory commands emitted by either the Air
Refuelling Operator (ARO) of the tanker aircraft, the pilot of a manned receiver, or the Air Vehicle Operator (AVO)
of an unmanned receiver are substituted by computer-controlled trajectories. Autonomy levels of the A3R operation
are defined by the responsibilities and tasks delegated to the computer, and range from Semi-Automatic Air to Air
Refuelling to fully Autonomous Air to Air Refuelling, where the whole operation is performed without required human
intervention.

In the last fifteen years there have been major breakthroughs in the field of one-to-one A3R, with flight test demonstra-
tions of image recognition and control technologies implemented in the receiver aircraft [1, 2] and in the tanker aircraft
[3, 4]. The next step towards a more autonomous operation including multiple manned and unmanned assets would
require additional robust control and cooperative capabilities provided by the CCL to enable close formation flying
with the required safety levels. Thus, in line with the A3R Concept of Operations (CONOPS) defined by the Aerial
Refuelling Systems Advisory Group (ARSAG), autonomous close formation flying has been identified as one of the
main enabling technologies in need of further development in order to reach the fully autonomous level of A3R [5].

In the autonomous A3R operation envisioned by Airbus Defence and Space, the proposed CCL for close formation
flying is based on a tanker-centralized command and control architecture that maximizes the compatibility with any
friendly receiver aircraft from a blue force, either manned or unmanned. In contrast with a decentralized control archi-
tecture, the proposed one requires no modifications of the receiver aircraft flight control software, under the hypothesis
that the latter accept autopilot commands from exogenous sources via a low-latency, encrypted and secure military
communication network. Following this approach, the tanker would act as a mothership generating the command and
control signals to the autopilots of the receiver aircraft, while being responsible for granting the required safety stan-
dards during the whole A3R operation and providing an optimal refuelling scheduling of the assets, collision avoidance
functionalities, and predefined separation protocols against loss of communication events.

The proposed CCL has been structured in a modular and hierarchical fashion, with three low-level command modules
and a top-level management module. The first low-level module contains the 4D adaptive guidance algorithms that
warrant a homogeneous response of the receiver aircraft position tracking error. The second module comprises the
adaptive second-order consensus protocol in charge of switching communication topologies and attaining the desired
coordination between the receivers. The third module contains the collision avoidance algorithm that ensures a min-
imum separation distance between all of the aircraft in the formation. Finally, these three modules are linked to a

Copyright© 2019 by Rodney Rodríguez Robles, Diego Lodares Gómez and Francisco Asensio Nieto. Published by the EUCASS
association with permission.

DOI: 10.13009/EUCASS2019-920



COOPERATIVE FORMATION FLYING CONTROL LAWS FOR AUTOMATIC AIR TO AIR REFUELLING

top-level manager, which combines their outputs in order to generate command inputs to the autopilots of each one of
the receiver aircraft part of the A3R operation.

With the aim of maximizing the compatibility of the CCL with the wide spectrum of receiver aircraft autopilot dy-
namics, this work focuses on the design of robust adaptive algorithms. By employing adaptive control and estimation
strategies, the knowledge requirements of potentially classified information related to the performance and dynamic
response of the receiver aircraft autopilots can be relaxed. Moreover, the adaptive approach has the inherent advantage
of minimizing the design and upload of ad-hoc embedded flight control software for new receiver aircraft that were
not considered during the design loops of non-adaptive control architectures. Nevertheless, versatility of the adaptive
control and consensus algorithms occasionally comes at the expense of lower robustness and stability margins against
unmodeled nonlinear dynamics and delays, which might not have been considered during the initial design phase of
the CCL. Hence, it is mandatory to add robust control modifications to the adaptive algorithms and include learning
protections against parameter drifting and bursting phenomena [6, 7].

2. A3R Concept of Operation

The A3R operational procedure will make use of the existing Air to Air Refuelling procedures and positions as exten-
sively as possible to ensure interoperability during mixed manned/unmanned refuelling operations. Therefore, A3R
receiver positions around the tanker are the same ones defined for manned operations [5] (Echelon Left, Astern Left
/ Center / Right, Contact and Echelon Right), with the inclusion of a new control point required to check navigation
performance and communications status before clearing the receiver aircraft to Echelon Left. This new point is termed
the Transition Position, located 1500ft behind and 1000ft below the tanker. The receiver approaches the Transition
Position from the rendezvous re-joint position. All of these positions are depicted in Figure 1.

Figure 1: A3R operation positions. Grey lines indicate an undirected communication link between each receiver aircraft
and the tanker via a data-link. Black lines denote a "virtual" undirected communication link solely generated by the
tanker to coordinate each formation (consensus protocols).

In the proposed CCL architecture, only those formations of receiver aircraft at the Transition Position, Echelon Left
and Echelon Right are coordinated via the guidance, consensus and collision avoidance modules. Receiver aircraft at
Astern Left, Center, Right or in Contact receive commands only from the guidance and collision avoidance modules.
This segregation intends to minimize the propagation of perturbations to receiver aircraft that are engaged in critical
phases of the operation, where their main objective is not to fly in close formation, but to establish contact with a
refuelling drogue or to accurately maintain a stationary relative position with the tanker in order to be refuelled by a
boom system.
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3. Adaptive Guidance

3.1 Dynamic Inversion

The guidance law for formation flight has the basic goal of making each of the aircraft follow a particular reference
point defined by a position rref, velocity vref, acceleration aref and jerk jref , daref/dt. The proposed guidance law
is based on performing a dynamic inversion on each plant, being all of them modelled as second order LPV (Linear
Parameter Varying) systems

ẋ = Ax + Bu,

y = x,
(1)

where A ∈ R6×6, B ∈ R6×3, the pair [A, B] is controllable; x = [v, χ, γ, v̇, χ̇, γ̇]T ∈ R6 is the state vector, u =

[vcmd, χcmd, γcmd]T ∈ R3 is the autopilot control input, y ∈ R6 is the measurement vector, v is the speed, χ the heading
angle and γ the climb or flight-path angle. Aircraft kinematics can be expressed in the velocity-axes frame, with unit
vectors uv, uχ, uγ ∈ R3,

uv = cos χ cos γ ex + sin χ cos γ ey − sin γ ez,

uχ = − sin χ ex + cos χ ey,

uγ = uv × uχ,
(2)

where ex, ey, ez ∈ R
3 are the unit vectors defining the local horizon (NED) frame. The vehicle’s velocity v, acceleration

a, and jerk j , da/dt are given by

v = v uv,

a = v̇ uv + vχ̇ cos γ uχ − vγ̇ uγ,

j =
(
v̈ − vγ̇2 − vχ̇2 cos2 γ

)
uv + (vχ̈ cos γ + 2v̇χ̇ cos γ − 2vχ̇γ̇ sin γ) uχ −

(
vγ̈ + 2v̇γ̇ + vχ̇2 cos γ sin γ

)
uγ,

(3)

so that j can be expressed in terms of the time derivative of the state vector ẋ

j = Φẋ + f (x),

Φ =

 03×3

1 0 0
0 v cos γ 0
0 0 −v

 =
[

03×3 φ
]
,

f (x) =
[
−vγ̇2 − vχ̇2 cos2 γ, 2v̇χ̇ cos γ − 2vχ̇γ̇ sin γ, −2v̇γ̇ − vχ̇2 cos γ sin γ

]T
.

(4)

An expected guidance error (or miss distance vector [8]), d ∈ R3, can be defined as

d = (rref − r) + tgo (vref − v) ,

ḋ = (vref − v) + tgo (aref − a) ,

d̈ = (aref − a) + tgo
(
jref − j

)
.

(5)

The approach consists in establishing a desired second-order dynamics for d, homogeneous in all coordinates:

d̈ + 2ξgωgḋ + ω2
gd = 0, ideally, (6)

where ξg, ωg ∈ R
+ are some design damping and natural frequency. Using equations (1), (4), (5), (6), and carrying out

the appropriate coordinate rotations, one can solve for the exact plant input that would achieve the desired guidance
error dynamics (6):

u = (ΦB)−1
(
−ΦAx + F(x, rref, vref, aref, jref)

)
,

F(x, rref, vref, aref, jref) = − f (x) −
a

tgo
+

1
tgo

 uT
v

uT
χ

uT
γ

 (jreftgo + aref + tIvref + 2ξgωgḋ + ω2
gd

)
.

(7)

It is clear from (7) that a necessary condition for this control law to be realizable is that the product (ΦB) ∈ R3×3 should
always be invertible.
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3.2 Adaptive Control Laws

Indeterminations and changes in the A and B matrices of (1) affect the performance of the pure dynamic inversion law
(7). In reality, what are known are the estimates of these matrices, Â and B̂ (the latter verifying to be invertible when
premultiplied by Φ, as happened with B), with the support of a series-parallel modelization of the true plant

˙̂x = Am x̂ + (Â − Am)x + B̂u,

= Am x̃ + Âx + B̂u,
(8)

where Am is a Hurwitz design matrix with the same dimensions as Â. Let the estimation errors be defined as x̃ = x̂ − x,
Ã = Â − A, and B̃ = B̂ − B. Then, the state estimation error x̃ will conform to the following dynamics:

˙̃x = Am x̃ + Ãx + B̃u, (9)

and the true input to the plant will be

u = (ΦB̂)−1
(
−ΦÂx + F(x, rref, vref, aref, jref)

)
, (10)

where F and Φ are the same as in (7), given that all the variables involved in them (as well as the true and estimated
state vectors x, x̂) are assumed to be measurable. Since this true input will no longer cancel out all the terms necessary
to achieve (6), one can define the departure from the desired error dynamics as

ε , d̈ + 2ξgωgḋ + ωgd = tgoΦ
(
Ãx + B̃u

)
, (11)

and the definition of D =
[
dT , ḋT

]T
leads to a state-space equation for the miss distance vector

Ḋ = AgD + Bgε,

Ag =


03×3 I3×3

−ω2
gI3×3 −2ξgωgI3×3

 , Bg =

[
03×3

I3×3

]
,

(12)

where I is the identity matrix. The goal will be to derive an adaptive scheme that attempts to keep this quantity at bay,
with satisfactory performance, by updating the estimated matrices Â and B̂ employed by control law (10).

3.2.1 Lyapunov-Based Design Law

The aforementioned objective can be met by defining Lyapunov function candidate

V =
1
2

DT PDD +
1
2

x̃T Pm x̃ +
1
2

tr
(
ÃT Γ−1

A Ã
)

+
1
2

tr
(
B̃T Γ−1

B B̃
)
, (13)

where PD, Pm, ΓA, ΓB ∈ R
6×6 are positive definite matrices, and tr is the trace operator. The time derivative of V ,

calculated using (12) and (9), is given by

V̇ =
1
2

DT
(
AT

g PD + PDAg

)
D +

1
2

x̃T
(
AT

mPm + PmAm

)
x̃ +

1
2

(
εT BT

g PDD + DT PdBgε
)

+
1
2

((
Ãx + B̃u

)T
Pm x̃ + x̃T Pm

(
Ãx + B̃u

))
+ tr

(
ÃT Γ−1

A
˙̂A
)

+ tr
(
B̃T Γ−1

B
˙̂B
)
,

(14)

so that PD and Pm should satisfy the following Lyapunov equations in order to verify the stability condition V̇ ≤ 0:

AT
g PD + PDAg = −QD,

AT
mPm + PmAm = −Qm,

(15)

with QD, Qm ∈ R
6×6 being positive definite design matrices. Using (11) and (15), V̇ can be written as

V̇ = −
1
2

DT QDD −
1
2

x̃T Qm x̃

+ tr
(
ÃT

(
Γ−1

A
˙̂A +

(
tgoΦT BT

g PDD + Pm x̃
)

xT
))

+ tr
(
B̃T

(
Γ−1

A
˙̂B +

(
tgoΦT BT

g PDD + Pm x̃
)

uT
))
,

(16)
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indicating that the estimated parameter update laws that would yield a stable system should have the following form:

˙̂A = −ΓA

(
tgoΦT BT

g PDD + Pm x̃
)

xT ,

˙̂B = −ΓB

(
tgoΦT BT

g PDD + Pm x̃
)

uT .
(17)

3.2.2 Bi-Objective Optimal Modification

Update laws (17) can be upgraded using optimal control theory [9], by making them include additional robustness
terms. The modification comes from minimizing the infinite-time horizon cost function

J = lim
T→∞

1
2

∫ T

0
(D − ∆D)T QD (D − ∆D) + (x̃ − ∆m)T Qm (x̃ − ∆m) dt, (18)

with Hamiltonian

H =
1
2

(D − ∆1)T QD (D − ∆D) +
1
2

(x̃ − ∆m)T Qm (x̃ − ∆m) + λT Ḋ + µT ˙̃x, (19)

where λ(t) : [0, ∞) → R6 and µ(t) : [0, ∞) → R6 are the adjoint vectors of D and x̃ respectively, and Qm, QD ∈ R
6×6

are positive definite matrices. The necessary conditions of optimality from Pontryagin’s minimum principle provide
the adjoint equations

λ̇ = −
(
∇DH

)T
= −QD (D − ∆D) − AT

g λ, µ̇ = −
(
∇x̃H

)T
= −Qm (x̃ − ∆m) − AT

mµ, (20)

and the optimal control update laws can be obtained from the gradient-based formulas

˙̂AT = −
(
∇ÃH

)
ΓT

A = −x
(
tgoλ

T BgΦ + µT
)
ΓT

A ,

˙̂BT = −
(
∇B̃H

)
ΓT

B = −u
(
tgoλ

T BgΦ + µT
)
ΓT

B,
(21)

with ΓA, ΓB ∈ R
6×6 being positive definite matrices. Closed-form solutions can be found using the “sweep” method by

assuming the adjoint vectors have the form

λ = PDD + Λα, µ = Pm x̃ + Cβ, (22)

where α(t) : [0, ∞) → R6, β(t) : [0, ∞) → R6, and Λ, C, Pm, PD ∈ R
6×6 . Substituting them into (20) yields the

following conditions

PDAg + AT
g PD + QD = 0, PmAm + AT

mPm + Qm = 0,

Λ = −νDA−T
g PD, C = −νmA−T

m Pm,

α = tgoBgΦ
(
Âx + B̂u

)
, β = Âx + B̂u,

(23)

where νD ≥ 0, νm ≥ 0 are free design parameters that enable balancing between robustness and performance of the
parameter update laws. Finally, using (21), one can write them as

˙̂A = −ΓA

(
tgoΦT BT

g PDD + Pm x̃ −
(
νDt2

goΦT BT
g A−T

g PDBgΦ + νmA−T
m Pm

) (
Âx + B̂u

))
xT ,

˙̂B = −ΓB

(
tgoΦT BT

g PDD + Pm x̃ −
(
νDt2

goΦT BT
g A−T

g PDBgΦ + νmA−T
m Pm

) (
Âx + B̂u

))
uT .

(24)

As can be seen, setting νD = νm = 0 in (24) would yield update laws (17).
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4. Adaptive Coordination

4.1 Graph Theory Notions

The communication network of N receiver aircraft that exchange information with the tanker during an A3R operation
can be described by an undirected connected graph defined as a triplet G = {V,E,A}, whereV = {n1, n2, . . . , nN} is a
node set, E = {(ni, n j) ∈ V × V} is an edge set with the element (ni, n j) describing the communication from node ni

to node n j, and A = [ai j] ∈ NN×N is the adjacency matrix. The edge ( j, i) ∈ E states that receiver i has access to the
information of receiver j, and is known as an incoming communication link to receiver i. Neighbours of receiver i are
defined by the set Ni = j : ( j, i) ∈ E of all nodes with directed edges toward i. The adjacency matrix A is defined by
ai j = 1 if ( j, i) ∈ E, and ai j = 0 otherwise. The Laplacian L = [li j] ∈ NN×N associated to the graph G is defined as
li j =

∑N
j=1, j6=i ai j and li j = −ai j, i 6= j. From this definition it is straightforward to conclude that λL = 0 is an eigenvalue

of L and the vector of ones of size N, 1N , is its associated eigenvector. When all of the receivers have access to the
status of all of their neighbours within a graph, E = V ×V and the graph G is said to be complete.

4.2 Adaptive Second-order Consensus Protocol

For the special case of the A3R operation without communication link losses, GA3R(t) is a cluster graph formed from
the disjoint union of complete graphs GT P(t), GEL(t) and GER(t), which are associated to those formations of receiver
aircraft located at the Transition Position, at Echelon Left, and at Echelon Right respectively, as shown in Figure 1.
This cluster separation is intended to avoid cross couplings between receivers of different formations, to minimize the
propagation of atmospheric disturbances along the network, and to restrict coordination to those agents who belong to
the same formation.

Given a formation cluster f of N f (t) ∈ N+
≥2 heterogeneous receiver aircraft defined by a switching complete graph

G f (t) = {V f (t),E f (t),A f (t)} ∈ GA3R(t) such that i ∈ N f (t) with N f (t) a subset containing all aircraft in the formation
f , the second order autopilot dynamics of the i-th receiver aircraft defined by the pair Ai, Bi, with the nonlinear dynamic
inversion guidance command (10) uG

i ∈ R3, and a consensus command denoted by uC
i ∈ R3 can be formulated as,

ẋi = Aixi + Bi

(
uG

i + uC
i

)
yi = xi ∀i ∈ N f (t) =

{
1, . . . ,N f (t)

}
,

zi = S C xi

(25)

where zi ∈ R
nc is a consensus vector of variables representing nc ∈ N>0 quantities of interest which are common

to all receivers, and S C ∈ R
nc×6 is a selection matrix. The consensus command uC

i must be designed to make all zi

vectors of the receiver aircraft within a cluster graph Gi to converge to a common solution plus an agent-specific bias
term. Moreover, to avoid a contest between guidance and coordination, the consensus command uC

i must generate
intra-formation flock behaviour patterns aligned with the guidance commands uG

i .

In order to solve this problem, a second-order consensus protocol with the decoupling approach defined in [10], entail-
ing additional stability modifications to the individual estimated parameters update laws (24) is proposed:

uC
i =

(
φiS C B̂i

)−1
(φi (q̇i + Ac (S C xi − qi)) − Fi) ∀i ∈ N f (t) =

{
1, . . . ,N f (t)

}
, (26)

q̇i = KL

∑
j∈N fi (t)

((
qi − δi

)
−

(
q j − δ j

))
+ KR

(
(qi − δi) − rc

)
∀i ∈ N f (t) =

{
1, . . . ,N f (t)

}
, (27)

where N fi (t) is the subset of N f (t) including all neighbours of agent i, qi ∈ R
3 is a vector containing the opinion of

receiver aircraft i, δi ∈ R
3 is a bias vector to be determined, rc ∈ R

3 is the design reference vector, AC ∈ R
3×3, KR ∈ R

3×3

and KL ∈ R
3×3 are diagonal negative definite design matrices, and φi = Φi

[
0T

3×3 | I
T
3×3

]T
. It is worth noting that (26) is

only defined when S C B̂i is regular, so nc must be equal to the dimension of u, this is, the number of receiver aircraft
autopilot commands, thus nc = 3. Moreover, the nonsingular condition for S C B̂i restricts the selected coordination
quantities present in zi to those state variables in xi that can be controlled directly through the control inputs. As
B̂i , [03×3 | B̂T

Ri
]T , and assuming that B̂Ri is regular, this condition can only be satisfied if we choose S C = [03×3 | I3×3]

to obtain a consensus vector zi = S C xi = [v̇i, χ̇i, γ̇i]T .

Redefining (27) for the whole formation f using q , [qT
1 , qT

2 , . . . , qT
N f

]T ∈ R3N f , ∆ , [δT
1 , δ

T
2 , . . . , δ

T
N f

]T ∈ R3N f , and
ϑ = q − ∆ ∈ R3N f as auxiliary variables yields
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ϑ̇ = L ⊗ KLϑ +
(
(IN f ⊗ KR)ϑ − 1N f ⊗ KRrc

)
− ∆̇

=
(
L ⊗ KL + IN f ⊗ KR

)
ϑ − 1N f ⊗ KRrc − ∆̇,

(28)

where ⊗ denotes the Kronecker product. As L · 1N f = 0N f , it can be shown that equation (28) has a stable stationary
solution defined by ϑ = 1N f ⊗ rc +Ω−1∆̇, where Ω = (L⊗KL + IN f ⊗KR), if limt→∞ ∆̈ = 03×1. For this reason, the design
matrices KR and KL have to be selected in a way such that Ω is always regular. As demonstrated in [11], the stability
of the stationary solution of (28) is determined by the stability of the following subsystems:

Al = λlKL + KR ∀l ∈ {1, . . . ,N f (t)}, (29)

where λl are the non-zero eigenvalues of the Laplacian L. Given that G f (t) is a complete graph, then λl = N f (t) ∀l ∈
{1, . . . ,N f (t)}. Moreover, as KR and KL are diagonal negative definite matrices, it is then concluded that the stationary
solution is globally asymptotically stable and the receiver aircraft within formation f always achieve coordination with
limt→∞ q = 1N f ⊗ rc + ∆ + Ω−1∆̇.

Substituting (26), (27) and (10) in (25), we obtain the following equation for the consensus vector zi of a receiver
aircraft with unknown matrices Ai and Bi:

żi = q̇i + AC (zi − qi) − Ãix − B̃i

(
uG

i + uC
i

)
= KL

∑
j∈N fi (t)

(
(qi − δi) − (q j − δ j)

)
+ KR

(
(qi − δi) − rc

)
+ AC (zi − qi) − Ãix − B̃i

(
uG

i + uC
i

)
∀i ∈ N f (t) =

{
1, . . . ,N f (t)

}
.

(30)

The design objective of generating intra-formation flock behaviour patterns aligned with the guidance commands can
only be met if the neighbour-independent term in (30) makes żi follow the original guidance dynamics with model
errors (10). This is,

Fi = KR

(
(qi − δi) − rc

)
+ AC (zi − qi) ∀i ∈ N f (t) =

{
1, . . . ,N f (t)

}
. (31)

Selecting rc = 03×1, we can finally compute the bias vector δi as

δi = −K−1
R

(
Fi − ACS C xi + (AC − KR)qi

)
∀i ∈ N f (t) =

{
1, . . . ,N f (t)

}
. (32)

Once all terms in (26) and (27) have been defined, we know proceed to derive the new terms to be added to the estimated
plant parameter update laws (24) and prove the stability of the guidance and consensus combination for the receiver
aircraft in formation f using the following Lyapunov function:

VC =
1
2

N f (t)∑
i=1

DT
i PDDi +

1
2

N f (t)∑
i=1

σT
i PCσi +

1
2

N f (t)∑
i=1

x̃T
i Pm x̃i +

1
2

N f (t)∑
i=1

tr
(
Ãi

T
Γ−1

A Ãi

)
+

1
2

N f (t)∑
i=1

tr
(
B̃i

T
Γ−1

B B̃i

)
, (33)

where Di = [dT , ḋT ]T ∈ R6 and σi = S C xi − qi are the guidance error vector and the consensus discrepancy of receiver
aircraft i, respectively, and PC ∈ R

3×3, PD, Pm, ΓA, ΓB ∈ R
6×6 are positive definite matrices.

The guidance error dynamics (12) has to be modified for each receiver aircraft i to include the new consensus command
(26). After some manipulations, the nonlinear guidance dynamic inversion error εCi with consensus yields

εCi , d̈i + 2ξgωgḋi + ωgdi = tgoΦi

(
Ãixi + B̃i

(
uG

i + uC
i

))
− KL

∑
j∈N fi (t)

(
(qi − δi) − (q j − δ j)

)
,

Ḋ = AgD + BgεCi ,

(34)

where Ag and Bg are defined in (12). The ordinary differential equation for the consensus discrepancy σi can be
computed expressing equation (30) in terms of σi,

σ̇i = ACσi − Ãix − B̃i

(
uG

i + uC
i

)
. (35)

Using (9), (34) and (35), after collecting terms in Ãi and B̃i, we obtain the time derivative of (33):
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V̇C =
1
2

N f (t)∑
i=1

DT
i

(
PDAg + AT

g PD

)
Di +

1
2

N f (t)∑
i=1

σT
i

(
PC AC + AT

C PC

)
σi +

1
2

N f (t)∑
i=1

x̃T
i

(
PmAm + AT

mPm

)
x̃i

+

N f (t)∑
i=1

tr
(
Ãi

T (
tgoΦT

i BT
g PDDixT

i + Pm x̃ixT
i − PcσixT

i + Γ−1
A

˙̃Ai

))
+

N f (t)∑
i=1

tr
(
B̃i

T
(
tgoΦT

i BT
g PDDi

(
uG

i + uC
i

)T
+ Pm x̃i

(
uG

i + uC
i

)T
− Pcσi

(
uG

i + uC
i

)T
+ Γ−1

B
˙̃Bi

))

+

N f (t)∑
i=1

tr

KT
L BT

g PDD
∑

j∈N fi (t)

(
(qi − δi) − (q j − δ j)

)T
 .

(36)

To grant that the first three terms in (36) related to the guidance, consensus and model errors remain negative, in
addition to (15), another Lyapunov equation arises,

PC AC + AT
C PC = −QC , (37)

in which QC ∈ R
3×3 is a positive definite matrix. Moreover, using (36) we can obtain the new consensus-aware update

laws for Âi and B̂i as

˙̂Ai = ΓA

(
−tgoΦT

i BT
g PDDixT

i − Pm x̃ixT
i + PcσixT

i

)
˙̂Bi = ΓB

(
−tgoΦT

i BT
g PDDi

(
uG

i + uC
i

)T
− Pm x̃i

(
uG

i + uC
i

)T
+ Pcσi

(
uG

i + uC
i

)T
)
.

(38)

Substituting (37) and (38) in (36) and reverting the trace operator yields

V̇C = −
1
2

N f (t)∑
i=1

DT
i QDDi −

1
2

N f (t)∑
i=1

σT
i QCσi −

1
2

N f (t)∑
i=1

x̃T
i Qm x̃i +

N f (t)∑
i=1

∑
j∈N fi (t)

(
(qi − δi) − (q j − δ j)

)T
KT

L BT
g PDDi. (39)

In order to show that Di, σi and x̃i are bounded, we need to further manipulate the last term in (39),

%T
i =

∑
j∈N fi (t)

(
(qi − δi) − (q j − δ j)

)T
KT

L ,

ρ ,
[
%1, %2, . . . , %N f

]
= L ⊗ KLϑ.

(40)

The time derivative of ρ can then be calculated as,

ρ̇ = L ⊗ KL

(
ρ + IN fi

⊗ KRϑ − ∆̇
)
, (41)

and the stability of the system is defined by the stability of λlKL. Once again, as G f (t) is a complete graph, then
λl = N f (t) ∀l ∈ {1, . . . ,N f } and thus L ⊗ KL is Hurwitz. Moreover, using (28), it follows that the system (41) has an
asymptotically stable solution defined by limt→∞ ρ = (L ⊗ KL) Ω−1∆̇ if limt→∞ ∆̈ = 03×1. Then, there exist a t∗ such
that ‖ρ(t)‖≤ ‖(L ⊗ KL) Ω−1‖‖∆̇(t)‖+k, for t > t∗ and k > 0 sufficiently small. Moreover, as ‖δ̇i(t)‖ is proportional to ‖ẋi‖,
and ‖δ̇i(t)‖ ≤ α‖ẋi‖, with α ∈ R+, we can state that ‖%i(t)‖ ≤ λmax((L ⊗ KL) Ω−1)α‖pi‖+k, where ‖pi‖ is the upper bound
of ‖ẋi‖ and λmax is the maximum eigenvalue. From these assumptions we obtain:

V̇C ≤ −
1
2

N f (t)∑
i=1

λmin (QD) ‖Di‖ −
1
2

N f (t)∑
i=1

λmin (QC) ‖σi‖ −
1
2

N f (t)∑
i=1

λmin (Qm) ‖x̃i‖

+

N f (t)∑
i=1

(
λmax((L ⊗ KL) Ω−1)α‖pi‖+k

)
λmax(BT

g PD)Di.

(42)

Given the following compact set,
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S =
{
Di ∈ R

6, σi ∈ R
3, x̃i ∈ R

6 :
1
2

N f (t)∑
i=1

λmin (QD) ‖Di‖+
1
2

N f (t)∑
i=1

λmin (QC) ‖σi‖+
1
2

N f (t)∑
i=1

λmin (Qm) ‖x̃i‖

−

N f (t)∑
i=1

(
λmax((L ⊗ KL) Ω−1)α‖pi‖+k

)
λmax(BT

g PD)Di ≤ 0,

∀i ∈ N f (t) = {1, . . . ,N f (t)}
}
,

(43)

using (42) and (43), it can be shown that VC decreases within the complementary set Sc and increases within the
compact set S that contains Di = 06×1, σi = 03×1 and x̃i = 06×1. Thus, any trajectory of these variables which starts
within the compact set S will always stay inside it for all t > t∗. Therefore, applying LaSalle’s Invariance Principle, we
can conclude that Di, σi and x̃i are ultimately uniformly bounded, and the proposed adaptive guidance and consensus
laws are stable. It should be noted that with the proposed update laws in (38), it is not guaranteed that Ãi and B̃i will
converge to 06×6 and 06×3 respectively, without an additional Presistence of Excitation condition.

5. Collision Avoidance Algorithm

The collision avoidance system propagates the trajectory of each aircraft within a time window t ∈ [t0, t0 + tH], where
t0 is the current instant, assuming that their geometric curvature and torsion remain constant. This operation yields an
helix representing the approximate path that the vehicle will follow, with curvature kh and torsion τh given by

kh =
‖v0 × a0‖

‖v0‖
3 =

√
χ̇2

0 cos2 γ0 + γ̇2
0

v0
,

τh =
v0 · (a0 × j0)
‖v0 × a0‖

2 = −
χ̇0 sin γ0

v0
+

1
k2

hv3
0

(
χ̈0γ̇0 cos γ0 − γ̈0χ̇0 cos γ0 − γ̇

2
0χ̇0 sin γ0

)
.

(44)

If these two properties were to be considered constant from t0 to t0 + tH , the TNB frame of the propagation helix can
be calculated from the Frenet-Serret formulas as functions of the traversed arclength sh, yielding

Th(sh) =

τ2
h + k2

h cos
(
sh

√
k2

h + τ2
h

)
k2

h + τ2
h

T 0
h +

kh sin
(
sh

√
k2

h + τ2
h

)
√

k2
h + τ2

h

N0
h +

khτh

(
1 − cos

(
sh

√
k2

h + τ2
h

))
k2

h + τ2
h

B0
h,

Nh(sh) = −

kh sin
(
sh

√
k2

h + τ2
h

)
√

k2
h + τ2

h

T 0
h + cos

(
sh

√
k2

h + τ2
h

)
N0

h +

τh sin
(
sh

√
k2

h + τ2
h

)
√

k2
h + τ2

h

B0
h,

Bh(sh) = Th(sh) × Nh(sh),

T 0
h =

v0

‖v0‖
, N0

h =
v0 × (a0 × v0)
‖v0‖ ‖a0 × v0‖

, B0
h = T 0

h × N0
h .

(45)

Other meaningful properties of the helix are its radius ρh and its axis, defined by a point ph and a unit vector uh:

ρh =
kh

τ2
h + k2

h

, ph = r0 + ρhN0
h , uh =

τhT 0
h + khB0

h

‖τhT 0
h + khB0

h‖
. (46)

The kinematic relationships that define the position, velocity, acceleration and jerk vectors of a particle along an
helicoidal trajectory can be computed once a user-supplied arclength function sh = sh(t) is defined (for instance,
sh(t) = v0 · (t − t0)):
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rh(t) =
1

k2
h + τ2

h


τ2

hsh + k2
h

sin
(
sh

√
k2

h + τ2
h

)
√

k2
h + τ2

h

 T 0
h + kh

(
1 − cos

(
sh

√
k2

h + τ2
h

))
N0

h + khτh

sh −

sin
(
sh

√
k2

h + τ2
h

)
√

k2
h + τ2

h

 B0
h

 ,
vh(t) =

dsh

dt
Th(sh),

ah(t) =
d2sh

dt2 Th(sh) + kh

(
dsh

dt

)2

Nh(sh),

jh(t) =

d3sh

dt3 − k2
h

(
dsh

dt

)3 Th(sh) + 3kh
d2sh

dt2

dsh

dt
Nh(sh) + khτh

(
dsh

dt

)3

Bh(sh).

(47)
Once each propagation helix has been generated, the collision problem consists in finding the first zero of the following
equation for each pair of aircraft {i, j} in the formation,

‖rh,i(ti j) − rh, j(ti j)‖2−
(
Ri + R j

)2
≤ 0, ti j ∈ [t0, t0 + tH], (48)

where Ri is the radius that defines a safety sphere around the i-th vehicle. The solution to equation (48), which can
be found using (47), sh(t) and any numerical root finding technique, will be the time-to-collide ti j between the two
considered aircraft. The absence of interference between the cylinders that contain each helix (augmented by the
previously mentioned safety radiuses) can be tested for a fast return, namely,

d(ph,i + λuh,i, ph, j + ηuh, j) >
(
ρh,i + Ri

)
+

(
ρh, j + R j

)
=⇒ @ ti j ∈ [t0, t0 + tH] , (49)

where λ, η ∈ R are the line parameters of each helix axis, and d() is the Euclidean distance.

If found, the magnitude ti j is then translated into a commanded velocity vector whose aim is to prevent a collision
between the {i, j} pair, with the form of what would be a symmetric repulsive force calculated at the collision instant
ti j, though applied at t0 instead:

∆vCA{i, j}
cmd, i = −∆vCA{i, j}

cmd, j = f (ti j − t0)
di j + bi j

‖di j + bi j‖
,

f (ti j − t0) =
tH

δ1 (ti j − t0) + δ2
− δ3, δ1 =

1
fH + δ3

−
δ2

tH
, δ2 =

tH

f0 + δ3
,

di j =
rh,i(ti j) − rh, j(ti j)
‖rh,i(ti j) − rh, j(ti j)‖

,

ni j =
(
ex/y/z × di j

)
/‖ex/y/z × di j‖,

bi j =

(
δ4 +

f (ti j − t0)
δ5

)
ni j × di j

‖ni j × di j‖
.

(50)

In the expressions above, parameters δ3 , f0 and fH can be used to adjust the slope of the repulsive command and its
values at ti j = t0 and ti j = t0 + tH , respectively. Parameters δ4 and δ5 � 1 control the bias vector bi j, which must be
used to deviate the commanded velocity increment from what a straight, pure repulsion would cause (one can choose
between ex, ey, ez or, in reality, any unit vector when calculating ni j to tune the bias vector’s direction); ε is some small
numerical tolerance.

The complete collision avoidance velocity increment for the i-th aircraft will be the weighted average of all of the
calculated pair-wise commands,

∆vCA
cmd, i =

∑
j : ti j∈[t0, t0+tH ]

1
ti j + ε

∆vCA{i, j}
cmd, i∑

j : ti j∈[t0, t0+tH ]

1
ti j + ε

, (51)

where ε is again a small constant. Finally, this velocity can be expressed in terms of a collision avoidance input uCA

through vector composition, taking into account the already known guidance and consensus inputs:
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uCA =


vT − uG+C

1

atan2
(
∆vCA

cmd · ey + uG+C
1 sin uG+C

2 cos uG+C
3 , ∆vCA

cmd · ex + uG+C
1 cos uG+C

2 cos uG+C
3

)
− uG+C

2

asin
((
−∆vCA

cmd · ez + uG+C
1 sin uG+C

3

)
/vT

)
− uG+C

3

 ,
vT =

√(
∆vCA

cmd · ex + uG+C
1 cos uG+C

2 cos uG+C
3

)2
+

(
∆vCA

cmd · ey + uG+C
1 sin uG+C

2 cos uG+C
3

)2
+

(
∆vCA

cmd · ez − uG+C
1 sin uG+C

3

)2
,

uG+C = uG + uC .
(52)

6. Simulation Results

The following autopilot model has been considered for a preliminary assessment of the proposed guidance scheme
(10),

ẋ =

[
03×3 I3×3

−K −C

]
x +

[
03×3

K

]
u, (53)

where K, C ∈ R3×3 are diagonal matrices, and the state and input vectors are the same as in (1). For this particular
case, parameter update laws (24) can be simplified as

˙̂K = ΓK ω

(
xT

[
I3×3

03×3

]
− uT

)
,

˙̂C = ΓC ω xT
[

03×3

I3×3

]
,

ω =
[

03×3 I3×3

] (
tgoΦT BT

g PDD + Pm x̃ −
(
νDt2

goΦT BT
g A−T

g PDBgΦ + νmA−T
m Pm

) (
Âx + B̂u

))
.

(54)

Figures 2 and 3 show the time evolution of the miss distance vector, the estimated parameters, Lyapunov function (13)
and commands uG for a constant reference acceleration input aref combined with a constant lateral displacement rref

(see equation (7)) contained in the North-East plane. It is apparent that ˙̂K, ˙̂C → 0, but, without a sufficiently rich
reference input, it cannot be guaranteed that K̂ → K, Ĉ → C.
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Figure 2: miss distance vector and estimated parameters.

Figure 4 depicts how the addition of consensus command (26) enables coordination of three heterogeneous plants,
subjected to an additional disturbance representing atmospheric turbulence. In this case, all plant inputs are saturated
reference velocity ramps.
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Figure 3: evolution of the Lyapunov function candidate and autopilot commands.
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Figure 4: simulation results with turbulence comparing the receivers’ miss distance when using uG + uC (left) or just
uG (center). Dis-coordination measure when using uG + uC or just uG (right).

Finally, Figure 5 shows the trajectories of four plants when their autopilot commands include collision avoidance input
(52), and are guided towards each other with constant and opposite vref. Results show that all collisions between them
are effectively avoided, and the safety sphere around each other is never violated. In this case, the bias vector (see
equation (50)) is calculated so that all trajectories remain in the North-East plane, for the sake of clarity.
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Figure 5: trajectories in a collision scenario (albeit operationally improbable in A3R), plant inputs are uG + uCA.
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7. Conclusions and Future Work

This study describes the fully autonomous A3R Concept of Operation, analyzing it from a Flight Control Laws perspec-
tive. A tanker-centralized command and control architecture has been proposed, of which three key components have
been identified and developed: an adaptive guidance law, a consensus protocol and a collision avoidance algorithm.
Future work includes the development of a high-level manager in charge of overseeing and regulating each component
output, and further research on alternative adaptive estimation techniques such as the promising Composite Learning
Control [12, 13].

Abbreviations

A3R Automatic Air to Air Refuelling
CCL Cooperative Control Law
ARO Air Refuelling Operator
AVO Air Vehicle Operator
CONOPS Concept of Operations
ARSAG Aerial Refuelling Systems Advisory Group
LPV Linear Parameter Varying
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