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Abstract 
A relative navigation system based on multispectral sensing device, for non-cooperative rendezvous 

between a chaser and a target, as well as for the descent and landing on an asteroid, is presented. 

Firstly, the advantages of using a multispectral camera capable of detecting different spectral 

signatures are discussed. Subsequently, the developed pose estimation algorithm is presented, giving 

details on the strategies for fusing information from the different bands and presenting our codebook-

based attitude retrieval mechanism. Finally, the adopted navigation filter, based on Extended Kalman 

Filtering (EKF), is described. Simulations are conducted to demonstrate the advantages and limitations 

of the proposed solution. 

 

1. Introduction 

Autonomous relative navigation between a chaser and a target is clearly becoming a mandatory function in 

many of the future space missions, and the associated challenges have been already the subject of many 

studies in the past. A key element of a successful navigation is obviously the navigation sensor: the optimal 

selection of the sensor is hindered by the great variety of and uncertainties associated to the targets, as well as 

the large variability of distances from these targets to the camera, therefore typically leading to locally 

optimal solutions, tailored for the scenarios at hand. Many developments have been performed and are still 

under way for navigation sensors working in the visible wavelengths, mainly because this uses a very mature 

technology, it is relatively low cost, and the database of targets in these wavelengths is quite complete. For 

example, for one of the next ESA interplanetary mission, JUICE, the navigation camera uses the well-known 

star tracker technology. Others technologies are under study, and for example TAS-F is leading a contract 

with ESA for a Time-Of-Flight camera for typically RdV type of missions, but still in visible wavelengths. 

Multispectral and Hyperspectral imaging has been used in space but at instrument level, and this always has 

resulted in quite complex instruments, because of the number of detectors needed, the required accurate 

temperature control, etc. It is clear, however, that using a larger part of the spectrum is a way to bring much 

more inputs to the navigation function and therefore make the navigation solution more robust and efficient. 

The challenge is thus to keep the resulting sensor at a reasonable level of complexity and cost. Relevant 

progress has been achieved in the last decade, as multispectral technologies are now widely used within 

different realms, such as drones for fields and forests observation. The progress made in this area has allowed 

a miniaturization of the sensing devices and it is therefore expected that it will also impact on space 

applications.  

This paper provides an overview of the methodology adopted within the ESA-funded Multispectral Sensing 

for Relative Navigation (MSRNAV) project to design and assess such navigation systems, in the case where 

the main sensor providing relative measurements between the chaser and a known target is a multispectral 

camera. Within the scope of the project, two operational scenarios have been identified: the first scenario is a 

non-cooperative rendezvous with a dead satellite (Envisat) in which the chaser performs a rendezvous with 

the target object, evaluates its attitude dynamics and CoM position and, if required, performs a forced 

translation in order to reduce the relative motion between chaser and target to levels adequate to initiate the 

capture; the second scenario comprises the descent and landing on one of the components of the binary 

asteroid Didymos with the objective of estimating the asteroid’s relative angular velocity, assuming that the 

spacecraft is static and, hence, all the motion is due to the rotation motion of asteroid. The main focus of this 

paper is the design and validation of the image processing and navigation filter developed in the scope of this 
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study; due to space limitations, focus is given to the autonomous rendezvous scenario, while only brief 

results are shown for the asteroid scenario. MSRNAV weights, in particular, the benefits of a multispectral 

sensing device with regards to additional complexity and costs, and when compared to the usual visual-

spectrum sensing. 

 

2. Multispectral Sensing for Relative Navigation 

Relative navigation between a chaser and a target is a key S/C capability for future Space missions, due to the 

relevance of close-proximity operations within the realm of Active Debris Removal (ADR) or Space 

Servicing Vehicles (SSVs), to cite a few examples. The target for the scenario is a large, dead satellite that is 

tumbling; for the purpose of the study, ESA’s civilian Earth observation satellite Envisat has been selected. A 

radiometric analysis was carried out in order to identify the spectral bands of interest for the study. The 

spectral bands identified are shown in the following Table. The values have been chosen to observe a 

maximum of spectral features while minimizing the number of spectral bands, to avoid introducing 

complexity to the instrument. The proposed bands can be seen as maximum bandwidths, and they could be 

reduced for algorithm and instrument specific constraints.  

 
 

The following section provides an overview of the methodology adopted within MSRNAV to design and 

assess such navigation systems, in the case the main sensor providing relative measurements between the 

chaser and the target is a multispectral camera with the proposed spectral bands. The device to be designed 

shall be generic enough for the two scenarios addressed within the project (although only one of the scenarios 

is considered in this paper), in order to be regarded as a potential GNC sensor. 

2.1 High-level architecture 

The high-level simulation architecture adopted within MSRNAV is illustrated in Figure 1. The simulator 

encompasses all the chaser and target dynamics, guidance algorithms, and sensor information generation. The 

latter data is used by the Image Processing (IP) algorithms and the navigation filter (where applicable) to 

generate relative state estimates, which are subsequently used to assess the performance of the overall 

estimation approach. 
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Figure 1: High-level simulation architecture 

 

2.2 Navigation Solution 

The architecture of the navigation filter, which is based on Extended Kalman Filtering (EKF), was developed 

according to four main design concerns: 

 

 Accurate modelling of the state dynamics – the accurate modelling of the chaser’s relative motion 

and attitude kinematics is critical for state propagation. Accurate state prediction is necessary to 

keep the KF linearization point valid, and to increase the system’s robustness to errors in aiding 

sensor readings. State prediction should also provide reliable estimates of the state at the whenever 

the G&C commands are applied. 

 Integration of sensor information – the strategies for integrating the measurements from the 

available sensors (IMU, star tracker, and camera) must be carefully considered. The nonlinear model 

of the sensor reading must be correctly described as a function of the estimated state, and relevant 

sensor non-idealities, such as noise and bias, should be compensated for in the navigation system. 

 Numerical stability and computational optimization – besides the analytic performance of the 

Kalman filter, the implementation of the navigation filter should account for computational issues. 

Namely, numerical methods should be adopted guaranteeing that the filter variables remain 

numerically-well defined, while the most appropriate state update techniques should be analysed. 

 Algorithmic updates motivated by sensor limitations – the navigation algorithm should be 

adapted to account for the image processing delay and of the GNC algorithm itself. The GNC 

algorithm should be designed such that G&C commands are applied at the proper time instant, 

irrespectively of the GNC processing delay. Also, a filtering strategy to integrate delayed 

measurement integration must be implemented, due to the delay between image capture and image 

processing 

 

2.3 Image Processing Solution 

The IP solution is designed to provide the attitude and position (pose) of a non-cooperative target with a 

monocular multispectral camera. The image processing pose estimation algorithm has been designed as a 

retrieval problem: the input image is compared against a codebook with image representations (aggregate of 

visual features) associated to poses; the pose is retrieved from the entry of the codebook with the minimum 

distance match to the aggregate of visual features extracted from the input image. A data dimensionality 

reduction technique (2D-PCA with L1 norm and sparse regularization) is applied in this case to reduce the 

size of the descriptors, so the matching process against the codebook can be performed with a reasonable 

amount of computational time. To exploit the information provided by the different bands of the 

multispectral camera, a codebook is built for each band, and the fusion of measurements is based on majority 

voting (i.e. the mode of the retrieved poses) 
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3. Simulation Architecture Overview 

Based on the design considerations presented in Section 2, the navigation architecture depicted in Figure 2 : 

Scenario description was adopted. 

 

 

Figure 2: Overview of the navigation architecture 

 

The main rationale for the selection of this loosely coupled architecture is the modularity of the approach. For 

the integration of the camera measurements, a tightly coupled design approach would depend on the IP itself. 

For example, if a feature detection and tracking were adopted, the EKF could directly take into account the 

position of the feature in the camera frame. However, this would mean that a change in the IP would lead to a 

change in the navigation filter. Moreover, for the selected IP approach within the ADR scenario, the natural 

output is the pose, thus requiring no transformations. 

3.1 Relative Position and Velocity Estimation 

This filter estimates the relative position and velocity of the chaser in Local-Vertical/Local-Horizontal 

(LVLH) coordinates (PLVLH and vLVLH respectively). This estimation is performed by using a relative sensor 

providing relative pose measurements, an inertial measurement unit, and an estimate of the absolute position 

(for orbital elements determination).  

The position and velocity are propagated using the so-called Yamanaka-Ankersen state transition matrix 

proposed in [5], augmented with a forced term that accounts for the thrust commanded by the control system. 

The bias of the inertial sensor is modeled as a slowly time-varying process, i.e. a random walk signal driven 

by white noise with very small covariance. 

For the measurements integration, the accelerometer model considered in the filter is given by:  

aa

RSF

r nbaa 
 

where na is the zero-mean measurement noise. Finally, the camera measurement is introduced in the filter by 

transforming the measured relative position from the camera reference frame to the LVLH reference frame.  

3.2 Absolute Attitude Estimation 

The absolute attitude (and angular rate) estimation is performed, within the scope of MSRNAV, by 

exploiting the star tracker measurements, as well as the angular rate readings provided by the rate gyros, 

within the IMU. An EKF was adopted, with the dynamics used for the propagation steps being: 

 Rate gyros measurements, used for the propagation of the estimated state, by the EKF 

 Star tracker measurements, accounted for by the EKF during the update cycle 
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3.3 Relative Attitude Estimation 

In terms of relative attitude estimation, an approach similar to the one described in the previous subsection 

(i.e. an EKF-based solution) was adopted. The key difference, however, is that the sensor providing attitude 

measurements is a camera instead of the star tracker. The IMU is used for the same reasons as before. 

 

4. Image Processing Architecture 

4.1 Background 

This section is devoted to the introduction of the concepts and theoretical background specific to the image 

processing algorithm, based on the approach from [6]. Firstly, the Histogram of Oriented Gradients (HOG) 

image descriptor is introduced,, followed by a dimensionality reduction technique based on two-dimensional 

Principal Component Analysis, the subsection ends with the overall IP algorithm definition. 

4.1.1 Histogram of Oriented Gradients 

Histogram of Oriented Gradients is an image descriptor proposed by Dalal and Triggs in  [7]. The descriptor 

encodes the object appearance by describing the orientation of its edges (gradients) along the image region. 

To achieve so, first the image is divided into small spatial regions known as cells. In each cell, the 

orientations of the edges are computed and used to build a one-dimensional histogram that encodes the cell 

orientations. Then, to achieve better invariance to illumination changes, the histogram cells are normalized 

by the energy of the neighbourhood (block).  The set of normalized blocks conforms the HOG descriptor. 

4.1.2 Sparse 2DPCA-L1 

Principal Component Analysis [8] is a statistical procedure used to reduce the data dimensionality while 

preserving the variance. The process is designed to extract the directions (or vectors) of the most variability 

of the data, with the constraint that each direction, known as principal component, must represent the highest 

variance being orthogonal to the preceding. The data dimensionality is reduced by projecting the data onto 

the subspace spanned by the principal components. 

Two dimensional PCA (2DPCA) [9] is an extension of PCA introduced by Yang et al. in the scope of face 

reconstruction and recognition. The idea behind this method is the same as standard PCA: find the optimal 

projection that maximizes the dispersion of the data, but in 2DPCA the data is arranged in matrices instead of 

in column vectors (e.g. images). 

The relation between PCA and 2DPCA is that 2DPCA is essentially PCA performed on the rows of the data 

matrices, understanding each row as a data unit. In other words, 2DPCA of a data matrix can be seen as PCA 

on the set of rows of the matrix, where the covariance matrix is evaluated using the rows of all the centered 

training samples [10], [11].  The introduction of L1-Norm-based 2DPCA [12] aimed to obtain basis vectors 

that maximize the data variance including the L1 norm to provide robustness against outliers. The square 

nature of L2 norm implicit in standard PCA entails that large differences between the data and its projection 

are more penalized compared to the L1 norm. Hence, the L1 norm increases the method's robustness to 

outliers. 

The sparsity (measured by the ratio of input variables equal to zero) is included in [13] by means of elastic-

net regularization [14]. Compared to standard PCA methods, where each principal component is a linear 

combination of all the input data features [14], the use of sparse methods encourages the reduction of the 

number of features in the generation of the principal components, selecting a few salient features among all 

the input data, and allowing a more efficient encoding of the information.  

The description of the process used to obtain the set of k principal components that maximize the variance for 

2DPCA with sparse regularization is out of the scope of this paper – the interested reader is referred to [13]. 

4.1.3 Attitude Sampling 

The representativeness of a dataset increases with the number of rendered views, but also with the diversity 

of these views. For a given number of rendered attitudes N, the dataset will be more representative if the 

attitudes are not clustered but evenly distributed.  
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The uniform sampling of attitudes, expressed in Euler angles or quaternions, does not lead to a uniform 

sampling of the possible views of the 3D object. Differently, uniform sampling generates distributions 

heavily biased towards regions of the sphere according to the set of rotation axes [15], [16]. However, if the 

set of Euler angles or quaternions representing the set of possible attitudes is sampled with a random uniform 

distribution, the resulting subset is uniform. 

An algorithm for generating uniformly distributed random quaternions is presented in [15]. Assuming rand() 

is a function that generates pseudo random numbers from a uniform distribution between [0,1]. The set of 

quaternions 𝑄 = (𝑤, 𝑥, 𝑦, 𝑧) = (cos (
𝜃

2
) , 𝑣𝑥 sin (

𝜃

2
) , 𝑣𝑦 sin (

𝜃

2
) , 𝑣𝑧 cos (

𝜃

2
))) described by a rotation angle θ 

and a three-dimensional vector (vx,vy,vz), can be uniformly sampled with the following procedure: 

 
1. Define a number of random orientations N. 

2. For each orientation 

a. Get a sample from the uniform random distribution 𝑟𝑎𝑛𝑑() 

b. Define 𝜎1= √1 − 𝑠 and 𝜎2= √𝑠 

c. Randomly generate two rotations by sampling the random distribution again: 

 

𝜃1 = 2𝜋 ·  𝑟𝑎𝑛𝑑() 

𝜃2 = 2𝜋 ·  𝑟𝑎𝑛𝑑() 

 

d. Compute the quaternion values as 

𝑤 = cos(𝜃2) · 𝜎2 

𝑥 =  sin(𝜃1) · 𝜎1 

𝑦 =  cos(𝜃1) · 𝜎1 

𝑧 =  sin(𝜃2) · 𝜎2 
 

e. Set 𝑄𝑖 = (𝑤, 𝑥, 𝑦, 𝑧) 

 

4.2 Architecture 

 

Figure 1: IP architecture shows a block diagram of the proposed IP algorithm, divided into two parts: 

codebook training, and classification. In the training stage, the rendered images are processed to extract a set 

of features describing the associated attitude and information used to retrieve the position. To obtain a 

computationally efficient version of the features describing the attitude, these are reduced in dimensionality 

by applying the sparse 2DPCA-L1 algorithm.  

 

 

 

Figure 1: IP architecture 
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The classification part follows a similar procedure: each input image is processed to generate an image 

containing only the target spacecraft. Then, features are extracted from the image, which are projected onto 

the principal components obtained in the training stage, to retrieve the attitude by finding the nearest-

neighbour in the codebook. 

 

4.2.1 Training 

This stage is designed to populate the codebook with image representations associated to attitudes and the 

information used to retrieve the position. 

 

The dataset with N images corresponding to N sampled attitudes is processed to obtain descriptors related to 

the attitude (Attitude Features) and position (Position Features). The attitude descriptors are obtained by 

describing the appearance of the target spacecraft in a given attitude. To do so, the concatenation of the pixel 

intensity values of the grey-scale image, and Histogram of Oriented Gradients is used. The relative position 

of the spacecraft, including the distance, is referred to a fixed-point relative to the spacecraft body. This fixed 

point is extracted from the ground-truth generated in the training set, and it is assumed to be the pivoting 

point of rotation of the target spacecraft in the training images, whose position remains unchanged for any 

attitude. The fixed point is expressed relative to the origin of the minimum bounding-box enclosing the 

object and stored into the codebook for each relative attitude.  

 

The position information is directly stored in the codebook, but the attitude descriptors present a large 

dimensionality, which makes unfeasible their direct storage on-board for both memory and computational 

reasons. For this reason, after the extraction of the whole set of descriptors, their principal components are 

computed using the 2DPCA-L1 algorithm described in [13]. The final set of descriptors is built by projecting 

the data over the first k principal components spanned by the basis vectors representing the principal 

components. Then, the projected descriptors associated to each pose are stored to populate the codebook 

along with the position information. In addition, the projection matrix is also stored, as it is necessary to 

project the new input descriptors from the classification stage. 

 

The holistic nature of the descriptors allows to uniquely describe each possible attitude. This is advantageous 

with respect to widely used local methods that model each view as a set of descriptors that can be present in 

different attitudes. The rotation invariance removes the ambiguity caused by two similar rotated views of the 

target spacecraft. In addition, the use of HOG descriptors and the application of sparse 2DPCA-L1 over the 

pixel intensity values provide robustness against illumination conditions not present in the training stage 

4.2.2 Classification 

In this stage, input images from the on-board camera are processed to retrieve the best match for the 

associated attitude. 

 

The input images to the system cannot be assumed to present ideal conditions in terms of noise or 

illumination. The introduction of a pre-processing stage is mandatory to improve the image in terms of 

signal-to-noise ratio and illumination: 

 

 Image denoising is performed to filter the noise from the image signal while keeping the image 

details unchanged. The technique used for image denoising is the LLSURE operator [17]. This is an 

edge-preserving technique that assumes the output pixel is a linear transformation of the input 

pixel’s neighbourhood. The linear transformation is driven by the SURE estimator, a mean-squared 

error unbiased estimator. It has O(N) complexity and it adapts automatically to the noise variance in 

the image, working under Poisson and Gaussian distributed noise. 

 Image Equalization is performed to even the illumination conditions on the image. The image 

equalization technique used is CLAHE: a contrast limited adaptive histogram equalization [18]. The 

contrast limit avoids over-contrasted images that would lead into a binary output. Adaptive means 

the algorithm is designed to consider the histogram over small patches. In this way, the contrast is 

optimized on a local basis, leading to even illumination conditions in the output. 
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After the image pre-processing, the pixels representing the target spacecraft are extracted by means of image 

segmentation. Image segmentation is the process of subdividing the image into a set of regions that share 

similar characteristics. The goal is to divide the image into two regions: foreground and background. 

Foreground is understood as the region containing the object of interest, i.e. target spacecraft, whereas 

background comprises any other object present in the image. This step, previous to pose estimation, provides 

knowledge about the location of the object and avoids a (computationally expensive) full search of the object 

over the image. 

 

Large variations in illumination conditions pose a challenge for image segmentation algorithms due to the 

casting of shadows that may occlude different parts of the target spacecraft, and thus leading into an incorrect 

segmentation. Multi-spectral imagery captures the radiance reflected by the object according to an external 

illumination source, whereas thermal imagery captures radiance emitted by the object, providing similar 

image conditions under different illumination scenarios including the absence of light in the scene. To 

minimize the effects of illumination conditions not considered in the development stage and possible 

segmentation errors that may arise, the thermal image has driven the development of the image segmentation 

algorithm as it presents similar characteristics over all the scenarios considered, providing robustness against 

variations in the source of light. As such, the foreground-background segmentation is implemented by using 

the information provided by the thermal band. The nature of the images allows a clear separation of the 

foreground in terms of pixel intensity levels under the illumination conditions present in the test scenarios. 

The segmentation is local-threshold-based in combination with morphological operators and a further 

optional refinement step with level-set minimization [19]. 

 

Once the target spacecraft is segmented, the pose is retrieved by extracting the features described in Section 

4.1.The extracted features are projected onto the principal components matrix stored in the codebook and 

used to retrieve the attitude of the spacecraft by finding the nearest-neighbour in the codebook under the L1 

norm. This distance metric proved to be the most discriminative under preliminary tests. Once the attitude is 

retrieved, the position, including the distance to the object is computed using the position information 

associated to the pose, and information retrieved from the image. 

 

5. Active Debris Removal scenario results 

In order to assess the validity of the proposed methods and the advantages of using a multispectral camera, a 

simulation scenario has been identified that envisages the “Rendezvous Phase” of an Active Debris Removal 

(ADR) mission: the chaser performs a rendezvous with the target object, evaluates its attitude dynamics and 

CoM position and, if required, performs a forced translation in order to reduce the relative motion between 

chaser and target to levels adequate to initiate the capture. A first hold point is assumed at a distance from the 

target of 100 m, and another one at 50 m. 

The target is a large, dead satellite, which is tumbling. The tumbling target is assumed to have the following 

orbital parameters: 

 Semi-major axis: 7145 km 

 Type of orbit: polar, Sun-synchronous. 

The target object is assumed uncooperative (no inter-satellite or target-ground communications, no hardware 

actively helping the rendezvous and capture shall be assumed to be available on the target) and non-

passivated.  

The chaser is assumed to be 3-axis controlled and able to perform relative navigation w.r.t. the target object 

during the full target orbit, anytime of the year. This relative navigation shall be fully autonomous without 

any ground intervention. 

In order to verify the performance of the Navigation and Image processing algorithms, they have been 

integrated into a simulation framework that, according to the scenario description, is defined as follow:  

 The relative motion trajectory is an ellipse centered in the target with semi-axis of 100 m and 50 m. 

 At the beginning of the maneuver the chaser is 100 m behind the target, then a ΔV in the radial 

direction, toward the Earth, is applied.  

 The camera line of sight direction with respect to the inertial frame changes with the mean anomaly 

of the spacecraft when the ΔV is applied. Then, it remains nearly constant during the scenario as 

shown Figure 2. 
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Figure 2 : Scenario description 

The simulation starts from an arbitrary point in the orbit, changing the initial mean anomaly, maintaining the 

same mean anomaly of application of the ΔV.  

The performance of the Navigation and IP have been tested in two configurations: 

 Lost in space configuration: no previous knowledge on the target attitude or position; this test aims 

assess the influence on the performance of the IP and navigation filter of parameters such as the 

number of bands available, the sun phase angle and the presence of Earth in the background. 

 Feedback configuration: the initial pose of the target is assumed to be known with a certain confidence 

level; this test aims assess the capacity of the IP and navigation filter to estimate the pose of the 

target during the whole trajectory. 

5.1 Lost in space configuration 

The first set of experiments aims to characterize the behavior of the IP algorithm in nominal conditions, i.e. 

without the navigation filter and without any prior knowledge about the pose of the target spacecraft.  

The performance of the IP algorithm, in terms of mean attitude and position error, is measured under 

different combinations of bands, Sun-phase angles, distance to the target, and presence of the Earth in the 

background. To do so, 100 images of the target in random attitudes are generated for each combination of: 

 Sun phase angles, ranging from 0 to 160 in steps of 10 degrees 

 Distances to the target: 50 m 

 Presence/absence of the Earth in the background 

And these tested over four different configurations of the algorithm in terms of band usage: 

 B1: All bands 

 B2: VIS-TIR (2 bands) 

 B3: NUV-VIS_TIR (5 bands) 

 B4: NUV-VIS (4 bands) 

The statistics obtained, in particular in terms of standard deviation, are used to feed the EKF with a surrogate 

of the confidence level of each IP output. To provide a more intuitive graphic representation, the average 

attitude and position error as a function of the Sun phase angle are represented in Figure 5-3 to Figure 5-8 for 

different distances to the target and Earth in the background conditions. The average position error is shown 

separately for the x, y, and distance components, as the latter is usually one degree of magnitude larger. 

 
No Earth in the background 

 

 

Figure 3 : Average attitude and position error as a function of the Sun phase angle. Distance to target 50m. 

No presence of Earth in the background 

DOI: 10.13009/EUCASS2019-961



A. Fiengo et al. 

     

 10 

 

Earth in the background 

 

 

Figure 4: Average attitude and position error as a function of the Sun phase angle. Distance to target 50m. 

With presence of Earth in the background 

A first conclusion on the results is the importance of the thermal band for image segmentation when the 

Earth is in the background (Figure 3), and for large Sun phase angles when the Earth is not in the background 

(Figure 3), where the multispectral-based segmentation errors caused by the strong shadows lead to large 

estimation errors. 

In terms of robustness to illumination, the multispectral bands are more affected by illumination changes, 

namely larger Sun phase angles conditions. This is reflected in the results, where an increase of the Sun phase 

angles leads to bigger errors in configurations with a large number of multispectral bands, causing a loss of 

influence of the thermal infrared. It can be noted that, when the Sun phase angles are larger than about 100 to 

120 degrees, the results worsen for the multispectral bands, being improved when the thermal band has more 

influence, providing more stable results in more difficult illumination conditions and in the presence of the 

Earth in the background. 

However, in favorable illumination conditions (small Sun phase angles), the configurations with a larger 

number of multispectral bands provide better results in both terms of angle and position errors. It is of 

particular interest the case in which the influence of the thermal band is completely removed when the Earth 

is not in the background (Figure 3 NUV-VIS configuration), in which the lowest errors are achieved. 

 

5.2 Feedback configuration 

In this configuration, a feedback loop is considered between the navigation filter and the IP block. Two cases 

of study are presented in the following subsection: 

 All six spectral bands, no Earth in the background 

 All six spectral bands, presence of Earth in the background. 

In all the simulation tests, an initial position estimation error of 10% is considered, in addition to an initial 

error angle of about 10 deg. This helps demonstrate the ability of the filter to recover from a wrong initial 

estimate, while also providing more meaningful results in the case no position and attitude measurements are 

used (i.e. propagation-only cases), as otherwise they could artificially lead to very small estimation errors. 

 

No Earth in the background 

For this case of study, particularly challenging illumination conditions have been considered, as depicted in 

Figure 5, with the target sub-exposed which leads to a lack of information in some critical areas of the 

spacecraft for the multispectral images. Figure 6 shows the estimated and measured relative position, relative 

velocity and estimated and measured relative attitude with the associated errors. 
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Figure 5: IP input for case 1 after denoising and equalization 

 

Figure 6: Estimated and measured relative position and associated error (left), estimated and measured 

relative velocity and associated error (centre), estimated and measured relative attitude and associated error 

(right) 

 

Earth in the background 

 
The features chosen for the IP are a concatenation of pixel intensity values and HOG: when the fine details of 

the image cannot be relied on, only a part of the descriptor loses relevance, while the part based on HOG 

carries enough information provided by the gradient of the contour. This can be observed in this case where, 

even if the light source is behind the target, its contour can be retrieved leading to results that are 

qualitatively similar to the ones in the previous case, as seen in Figure 8, showing the estimated and 

measured relative position, relative velocity and estimated and measured relative attitude with the associated 

errors. This proves the capabilities of the algorithm to work in conditions where features based on fine detail 

of the image cannot be relied on.  
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Figure 7: IP input for case 1 after denoising and equalization 

 

 

Figure 8: Estimated and measured relative position and associated error (left), estimated and measured 

relative velocity and associated error (centre), estimated and measured relative attitude and associated error 

(right) 

5.3 Discussion 

The IP algorithm chosen for the Rendez-vous scenario presented in the previous sections have been evaluated 

in different conditions and with multiple combinations of spectral bands. The algorithm does not require 

depth-information coming from a set of stereo-cameras, LIDAR, or time-of-flight sensors. Differently, it is 

designed to work on multi-spectral mono-cameras by exploiting the capabilities of each band with a high 

degree of modularity in terms of band usage. The proposed method has the capability of working without any 

prior knowledge of the spacecraft’s pose (thus being able to operate in the lost-in-space condition), and 

converging to a reasonable good estimate of the attitude in a short period of time, or use prior knowledge to 

improve the estimation and reduce the computational load. 

The thermal-infrared band, potentially with lower resolution and less capability of acquiring fine details, can 

be mainly used for segmentation. Then, the different spectral bands with larger resolution and capability of 

acquiring fine details may be used for the extraction of features and retrieval of the pose. Therefore, the first 

key advantage of a multi-spectral device is the availability of thermal-infrared measurements, which have 

been demonstrated to play a major role in proper image segmentation. 

Another relevant feature of the IP algorithm implemented is that it does not require an on-line evaluation of a 

target spacecraft 3D model, and the posterior resolution of complex PnP problems, as the matching scheme is 

based on the L1 distance. This allows an efficient and parallel implementation of the matching process, with 

a straightforward way of introducing previous knowledge of the target attitude. 
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The features chosen for the pose estimation algorithm are designed to provide high robustness against 

illumination conditions and to directly capture the information provided by the different spectral bands. On 

the one hand, the multispectral information is introduced by using the principal components of each image 

band as a feature. On the other, HOG descriptors provide robustness to different illumination conditions as 

they rely on information provided by the gradient. However, the direct usage of the feature combination is 

unfeasible due to two main different reasons: 

 The direct usage of pixel intensity values is not robust to changes in illumination and it is too 

dependent on the fine detail of the image. 

 The large size of the images combined with the HOG descriptor would result in large image 

matching times for each of the different bands.  

The introduction of a principal component analysis technique for reducing the size of the features allows an 

efficient manipulation of the dataset. The features are reduced in dimensionality by projecting them onto the 

principal components, retaining the meaningful information at a fraction of the original dimensionality. The 

two-dimensional nature of the principal component algorithm chosen (Sparse 2DPCA-L1) permits to set a 

larger number of images in the training stage, whereas sparsity encourages that only meaningful features are 

kept. 

The fusion of the features is done at the decision level (high-level fusion), as the creation of image 

composites (low-level fusion) for training the algorithm presents a main inconvenience: the modularity in 

terms of usages of bands is lost. It is not possible to add or remove layers without explicitly training a 

codebook with that given configuration, which would lead to a very large number of codebooks to account 

for all the possibilities, giving rise to large memory requirements.  

Differently, training one codebook per image band permits to set any desired configuration with a small 

number of trained codebooks. In conditions where the illumination is favorable, the usage of multispectral 

bands can improve the detection thanks to the capability of acquiring more details. In other scenarios, where 

shadowing can affect the capability of the multispectral images, the detection can be thermal-based. 

The fusion scheme is based on majority voting between codebooks corresponding to each active band. If a 

given attitude has majority across codebooks, it is set as the final attitude. In the case no majority exists, the 

retrieved attitude with a smaller feature distance to the respective codebook is returned. 

Hence, the second clear advantage of a multi-spectral device is the availability of several bands which, when 

combined with high-level fusion approaches like majority voting, can improve the overall robustness of the 

estimation. 

6. Asteroid scenario results 

The algorithm developed for this scenario estimates the target's relative angular velocity by measuring the 

visual displacement of visual features (feature tracking) extracted from two consecutive input images 

corresponding to two consecutive time instants. The visual features are extracted in each spectral band and 

the displacement information (in terms of pixels) is processed by an error model that provides the rotation 

error of the algorithm against a ground truth. Three cases have been considered representing different 

illumination conditions; for each case, different band combinations have been tested. Table 1 shows the 

asteroid’s angular rate determination error for all the cases studied and all the band combinations, presenting 

the total error and the isolated IP error contribution (in brackets, evaluated assuming the asteroid shape 

knowledge error and the rate knowledge error equal to zero), as well as the average number of tracked 

features per image, presented in Figure 9 for case 1. The use of TIR offers the best performance for 3 out of 

the 4 cases and the asteroid rate determination error for this band alone is the most stable one, confirming the 

robustness of TIR band to the illumination conditions. 

It is also remarked that, for cases 1 and 2, which present the best illumination conditions, the errors are 

similar for all the combination of spectral bands, while for case 3 the combination of different spectral bands 

has a strong impact on the overall performance of the algorithm, resulting in a clear reduction of the error. In 

fact, VIS-NIR-TIR is the only combination of bands that ensures an error roughly below 25% in all of the 

scenarios considered, thus fully illustrating the clear advantages in terms of robustness and performance of 

the multi-spectral device. 
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Figure 9: Tracked features for each band, case 

Table 1: Asteroid Rate Determination Error for all the cases and all the band combinations considered. Error 

is a percentage of the actual rotation rate of the asteroid; in brackets, the error due to the IP 

 

 

7. Conclusions 

A novel, mono-camera approach for non-cooperative spacecraft pose estimation has been designed, 

implemented and successfully tested under several challenging scenarios with unfavourable illumination 

conditions and, in most of the cases, with the presence of the Earth in the background. The results of the test 

campaigns lead to the conclusion that the use of a multispectral camera for autonomous navigation presents 

several advantages over a standard optical camera, while certain limitations have also been identified. For 

both scenarios, the use of the thermal infrared band allows the IP to have robustness to illumination 

conditions. In the first scenario, the presence of the Earth in the background represents a challenge for the 

monocular visual-based segmentation that can be directly overcome with the use of a thermal infrared sensor; 

in the second scenario, the number of features that can be tracked is sensitive to the illumination conditions: 

if the scene is overexposed or covered by shadows, the number of visual-features is drastically reduced. The 

usage of the TIR band allows tracking features on those extreme cases. In addition, it helps the algorithm 

achieve more consistent results across different illumination conditions. However, when the thermal layer is 

not available, more complex techniques are required in order to obtain a reliable segmentation. A possible 

approach is the use of Deep Learning techniques: since the target is well-known and a large number of 

images can be synthetically generated, a Convolutional Neural Network may provide improved segmentation 

performance with a relatively low computational cost. Moreover, such a network can, in principle, be trained 

and validated on-ground and tested in-flight.  
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This study also provided a trade-off between the several possible IP solutions for multi-spectral devices. IP 

algorithms that are sensitive to small intensity variations are, by construction, less robust to changes in the 

illumination conditions. Hence, an approach based on descriptors robust to illumination conditions was 

adopted and shown to generate the expected results under a wide range of configurations. Moreover, the IP 

algorithms were designed in such a way so as to directly exploit the information present in the different 

multispectral bands, and to allow a modular usage in terms of band configuration without a significant 

increase in terms of computational complexity. Finally, the algorithms were selected taking into account also 

the associated computational limitations, as approaches that use, for instance, the 3D model of the target, 

typically require the resolution of complex PnP problems, thus not being regarded as baseline for this study. 
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