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Abstract
In this paper we present a new computational framework for finite strain elastoplasticity applied to the
springback analysis. The computational algorithm includes both elastic and plastic anisotropy and kinematic-
isotropic hardening. The formulation solves the elastoplastic problem through a new corrector-predictor-
type algorithm in the logarithmic strain space, with the novelty to present an elastic corrector instead of
the classical plastic predictor. The springback analysis with finite element is important to predict the shape
of sheet metal parts manufactured by plastic forming. The springback simulation has been performed with
the commercial program ADINA® and a user subroutine implementing the computational algorithm.

1. Introduction

The springback phenomenon is a undesirable change in the final shape of metal forming manufactured parts, that
occurs when the unloading follows the plastic forming process. This unavoidable effect has a great dependence on
the elastoplastic material properties, specially on the plastic evolution and strain hardening of the metallic materials.
The geometry is also another important aspect to take into account if large displacements are present and the overall
geometry has large aspect ratios between the main dimensions.

The primary issue to successfully simulate the springback on an elastoplastic problem is related to the behaviour
of the metallic materials and the constitutive model considered, where the plastic hardening is the responsible of
the final deformations and residual stress resultant in the forming process. Sheet metals exhibit anisotropic plastic
behaviour due to the macroscopic texture, a property dependent on the metallic grain morphology and distribution,
and their oriented microstructure. During the forming process, when large deformations take place, anisotropy causes
important effects over the final shape of the metallic parts, like an anisotropic distribution in the elastic strains and
the appearance of sensitive residual stresses, or the earing in the deep drawing forming of cylindrical cups. In the
aeronautic industry, one important problem due to this usually undesirable effect is the springback on the forming of
wing leading edges or other sheet metal parts that require a large strain forming.

The main objective of this paper is showing the robustness and applicability of the novel framework [1] to
simulate and predict a complex springback benchmark. To this end, in the next section we describe the formulation
used in this paper, which is implemented as a user subroutine in the commercial finite element program ADINA®.
After that, we demonstrate the applicability of the approach to prediction of springback phenomenon in sheet metal
forming benchmarks and perform a comparison with established formulations.

2. Continuum theory and algorithmic framework in the elastoplastic model

In this section we show the most important aspects of the continuum theory and the algorithmic framework employed
to the stress integration. For a further understanding of the framework used in this paper, the reading of [1, 2] is highly
recommended.

The material model combined hardening is motivated from the rheological model shown in Fig. 1. This phe-
nomenological macroscopic model may be described for infinitesimal strains in an appropriate interpretation, com-
monly referred as small strains, where ε and σ are the measurable variables, strain and tress respectively, and later
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permit us an easy extension to the respective variables E and T to define the elastoplastic behaviour in finite strains,
commonly referred as large strains.

The device includes one dissipative Prandtl-type branch with a friction element in a series disposition with an
elastic hookean spring, named as the internal branch. It is into this last branch where the internal state variables (elastic
strain and plastic strain) operates simultaneously. The second branch is placed in a parallel arrangement with the in-
ternal branch, and contains an only spring Hooke-type element. This second branch is responsible for the macroscopic
kinematic hardening, referred as the kinematic branch, and where only the external variable total strain operates. This
approach avoids the use of additional internal variables in the continuum formulation kinematic hardening in the plastic
evolution, like the backstress present in other classical models.

Figure 1: Rheological device motivating the anisotropic finite elastoplasticity model, with nonlinear combined isotropic
and kinematic hardening.

The model employs a Lee-type multiplicative decomposition over the deformation gradient F, split in an elastic
part Fe and a plastic part Fp in order to obtain the internal state variables placed in the rheological model presented in
Fig. 1.

F = FeFp (1)

At this point, we are interested in the use of a logarithmic strain framework. This strain measure offers an
interesting additive quality, and Eq. 1 allows us to describe the logarithmic strain tensor variables in a natural form:
Ee = 1

2 ln(FT
e Fe) and E = 1

2 ln(FT F), in their respective configurations, and obtain the important internal state variable
dependence Ee(E, Fp). This operation is of great importance int this work for the algorithmic elastoplastic problem,
because it will permit us to decompose the strain rate tensor into the natural addition of two partial contributions in the
incremental continuum theory

Ėe(Ė, Ḟp) =
∂Ee

∂E

∣∣∣∣∣Ḟp=0
: Ė +

∂Ee

∂Fp

∣∣∣∣∣∣Ė=0
: Ḟp = Ėe|Ḟp=0 + Ėe|Ė=0 (2)

where the first addend is obtained within a continuum framework, when the internal evolution variable (dissipative
plastic strain rate) is frozen, whereas the second addend is obtained when the external evolution variable (total strain
rate) is frozen. This last mentioned condition occurs when internal evolution is allowed in the incremental algorithmic
framework, where these events occur incrementally and sequentially. This additive split operation is in fact, equivalent
to the classical corrector-predictor scheme, and Eq. 2 may be read as

Ėe(Ė, Ḟp) = Ėe|Ḟp=0 + Ėe|Ė=0 = tr Ėe + ct Ėe (3)

where tr Ėe is the predictor term, or trial elastic contribution to the elastic logarithmic strain rate tensor Ėe and depends
on the logarithmic strain rate Ė only, when the plastic evolution is frozen (Ḟp = 0) in the continuum incremental theory.
The second addend is the corrector term, in fact the plastic contribution to the elastic logarithmic strain rate tensor Ėe,
and depends on the plastic deformation gradient Ḟp only, because now the total strain rate external variable Ė is frozen.

2.1 Dissipative terms of the elastic logarithmic strain rate

The stored energy function, or Helmholtz free energy, may be written in terms of any Lagrangian strain measure. The
use of logarithmic strain for convenience in this work and the discussed motivation by the rheological model in Fig. 1
lead to an stored energy function written in terms of the total logarithmic and elastic strains as

Ψ(E, Ee) = Ψkin(E) + Ψint(Ee) (4)
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where Ψkin(E) is the strain energy function associated to the external variable total strain which operates in the “exter-
nal” spring element, and Ψint(Ee) is the energy function associated to the internal variable elastic strain which operates
within the “internal” spring element. The total stored energy Ψ can be split into a volumetric hyperelastic part and a
deviatoric elastoplastic part. The stored energy contributions are quadratic in terms of the respective arguments, i.e.

Ψ(E, Ee) =
1
2
κ(trEv)2 + µkinEd : Ed︸                         ︷︷                         ︸

Ψkin

+ µint Ed
e : Ed

e︸       ︷︷       ︸
Ψint

(5)

where µkin and µint are the respective elastic material parameters in their deviatoric form: shear moduli (Lame’s con-
stant) of the external and internal part, respectively. κ is the bulk modulus. Ev and Ed are the total volumetric and
deviatoric logarithmic strain, respectively. Ed

e is the internal deviatoric elastic logarithmic strain. The dissipation rate
according to the Clausius-Duhem inequality, may be written as

D = P − Ψ̇ = P − Ψ̇kin − Ψ̇int (6)

where we introduce two important stress tensors (work-conjugate of logarithmic strain measure)

Tkin =
dΨkin(E)

dE
and T|eint =

dΨint(Ee)
dEe

=
dΨint(Ee)

dEe
:
∂Ee

∂E

∣∣∣∣∣Ḟp=0
(7)

and the total stress tensor
T = Tkin + T|eint :

∂Ee

∂E

∣∣∣∣∣Ḟp=0
= Tkin + Tint (8)

and where the stress tensor Tkin lies in the reference configuration, as E does, and T|eint lies in the intermediate configu-
ration as Ee. The stress tensor T is work-conjugate of the logarithmic strain, and is named in this work as generalized
Kirchhoff stress tensor. Both stress tensors in Eq. 7 are not in the same large strain configuration, because T|eint is placed
in the intermediate configuration by the elastic predictor, when the plastic corrector starts in the incremental theory. In
the infinitesimal description, both tensors are placed in the same and only single configuration. On the other hand, the
tensor Tkin is an external variable in this model, probably similar to the backstress variable common in other kinematic
hardening models, but where this backstress is internal depending on the plastic strain variable, while Tkin depends on
the total strain.

Considering now Eq. 6 in the case of the elastic strain rate with a frozen total strain rate, so that the nonnull
plastic term (Ḟp , 0) motivated by the rheological device shown in Fig. 1, where only the internal branch is dissipative,
may be reduced to the expression

D ≡ − Ψ̇int

∣∣∣Ė=0 = −T|eint : ct Ėe > 0 if Ḟp , 0 (9)

where dissipation is written in terms of symmetric tensors, both of purely elastic nature living in the intermediate
configuration. The term ct Ėe is named as the corrector contribution to the elastic logarithmic strain rate Ėe, which it
is the power-conjugate of the stress tensor T|eint = dΨint/dEe. Note that the frequently used non-symmetric Mandel
stress tensor as work-conjugate of the non symmetric plastic velocity gradient tensor, both commonly present in other
dissipation equations of the literature, are not present in this model.

This novelty, where the dissipative evolution may be written with the term of elastic strain rate Ėe in this work,
avoids the use of plastic rates and permits us write the associative flow rule as follows

ct Ėe = −γ̇
1
2
3 k
∇φT = −γ̇

1
2
3 k
NT : T|eint (10)

where NT is the Hill fourth order tensor, that contains the anisotropic plastic material parameters in a fully symmetric
form, and where we introduce the use of the anisotropic yield function. In this manner, Eq. 10 provides an orthotropic
symmetry to the plastic evolution in the anisotropic behaviour. The term γ is the plastic multiplier or the accumulated
plastic strain in the algorithmic solution, and k is the material yield stress parameter. φT is the plastic potential for
Kirchhoff stresses. In the associative form it is equal to the yield function and drives the corrector step to ensure that
the stress is always into the elastic domain, to complete the return mapping scheme. From Eq. 9 we can identify the
yield function of the elastic generalized Kirchhoff stress tensor when plastic loading condition is fulfilled, written with
the stress tensor lying in the intermediate configuration

fT (T|eint, k) = T|eint : NT : T|eint −
2
3 k2 = 0 if γ̇ > 0 (11)

A very important property of Eq. 10 is that it preserves the classical return mapping schemes of the infinitesimal
theory, even in the case of a general orthotropic elastoplastic material. Another key aspect gaining importance is the
now possible integration of the dissipative corrector contribution of Eq. 10 in an fully additive manner for large strains
as it is done in the infinitesimal theory, thanks to the use of the logarithmic strains in the computational framework.
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2.2 Stress integration algorithm

The stress integration algorithm is carried out over Eq. 10, the elastic logarithmic strain rate tensor, using a backward-
Euler algorithm in the consistent nonlinear equation

t+∆t
0Ee = t

0Ee +

∫ t+∆t

t

tr Ėedτ +

∫ t+∆t

t

ct Ėedτ = tr Ee −
∆γ

2
3

t+∆tk
NT : t+∆tT|eint (12)

then written as a residual equation

t+∆tρe = t+∆t
0Ee +

∆γ
2
3

t+∆tk
t+∆t∇φT −

trEe −→ 0 (13)

Note that Eq. 12 is a formula valid for large strains but it is also of an additive nature as the small strain case,
thanks to the properties of logarithmic strains. This integration algorithm avoids the use of the exponential mapping
and ensures an isochoric plastic flow for the pressure-insensitive yield criteria.

Additionally, the rate of the yield function must fulfill the consistency requirement of the Kuhn-Tucker conditions
ḟT = 0 when γ̇ > 0 at any time t

ḟT = ḟT |Ḟp=0 + ḟT |Ė=0 (14)

Both conditions, Eq. 13 and Eq. 2, make up a set of nonlinear equations that must be solved interatively using an
Newton-Raphson-type algorithm, with a residual equation t+∆tR( j)−→ O, where ( j) represent the local iteration counter
for the computational step from the initial algorithmic time t to the final time t + ∆t

t+∆tR( j)
(

t+∆t
0E( j)

)
:=

{
t+∆tρ

( j)
e

t+∆t f ( j)
T

}
−→ 0 with t+∆t

0E( j) :=
{

t+∆t
0E( j)

e
t+∆t

0γ
( j)

}
(15)

where the tangent matrix is obtained as

∇t+∆tR =


dt+∆tρint

d t+∆t
0Ee

dt+∆tρint

d∆γ

dt+∆t fT
d t+∆t

0Ee

dt+∆t fT
d∆γ

 (16)

Once the solution has converged in the local Newton-Raphson algorithm, t+∆t Ee and t+∆tγ are directly obtained.
Afterwards, internal stresses t+∆tT|eint are calculated in the updated intermediate configuration.

The next step is to obtain the elastoplastic tangent modulus of the rheological device, which adopts exactly the
same form as it does in the infinitesimal strains case.

2.3 Computational algorithmic scheme

Finite element programs work commonly with a total Lagrangian formulation for large displacements and strains, and
use the second Piola-Kirchhoff stress tensor as work-conjugate of the Green-Lagrange strain tensor. Our model works
with logarithmic strains and generalized Kirchhoff stress and this forces us to translate the internal variables in order
to measure the stress tensor variable used by finite elements, in this case through the consistent algorithmic operation

t+∆tSint = t
0X−1

p

(
t+∆tT|trint :

d trEe

d trAe

)
t
0X−T

p (17)

t+∆tS = t+∆tSkin + t+∆tSint (18)

finally we obtain the second Piola-Kirchhoff stress tensor t+∆tS in each Gaussian integration point, updated and mapped
into the reference configuration. This term is necessary to update the geometrical stiffness matrix in the nonlinear finite
element code, as indicated in Fig. 2. The term (d trEe/d trAe) is the fourth order mapping tensor from logarithmic
strains to Green-Lagrange quadratic strains, both in the intermediate configuration.

The second necessary term to complete the integration algorithm is the elastoplastic tangent modulus, obtained
through the proper mapping operation performed in Eq. 17, but mathematically more complex, of which details are
out of the scope of this paper. As usually done in Total Lagrangian finite element codes, we obtain the elastoplastic
modulus through the algorithmic consistent operation carried out as
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t+∆tCep =
d t+∆tSint

d t+∆t
0A

(19)

The developed numerical algorithm for contribution to stresses is summarized in Box 1 (2.3). This scheme has
been implemented into a user material subroutine in ADINA® commercial program [3] via UCMAT3 user subroutine
in .dll format for applications to sheet metal forming, and in this paper applied to simulate the springback problem
inherent to sheet metal forming.

ADINA® provides an implicit integration scheme for global solution of the finite element model, using by
default the Newton-Raphson method, but applied to the problem over the finite element nodal variables, and with a
Total Lagrangian formulation for large displacement/strain formulation. Therefore, we need to return the second Piola-
Kirchhoff stress tensor S and its related consistent tangent modulus C to the main program, as it is schematized in Fig.
2.

Figure 2: Computational scheme between ADINA® program and our user elastoplastic material subroutine, in terms
of consistent algorithmic variables.

3. Application for Sheet Metal Forming: Springback Prediction

In the automotive and aeronautic industry, new sheet metal parts are designed using finite element method software.
Industrial requirements such as fits and clearances or surface roughness are not well satisfied by today’s accuracy of
these simulations. One of these limitations is the accurate prediction of springback and that is why the phenomenon of
springback and its analysis are growing concern in sheet metal forming industry. Under these circumstances this paper
deals with this analysis in order to validate the material model addressed in the previous sections.

Table 1: Nomenclature for material parameters.

E Elastic Modulus (N/mm2)
ν Poisson’s Ratio (-)
k0 Reference Yield Stress (N/mm2)
k∞ Limit Stress Parameter (N/mm2)
H Real Linear Hardening Modulus (N/mm2)
β Mixed Hardening Parameter a (-)
H̄ Effective b Linear Hardening Modulus (N/mm2)
δ Voce Hardening Parameter (-)
a, b, c, f , g, h Hill’s anisotropy parameters c (-)
2µint Internal Shear Moduli (N/mm2)
2µkin External/Kinematic Shear Moduli (N/mm2)
a β = 1 for isotropic hardening, β = 0 for kinematic hardening
b H̄ = βH. See [2]
c Hill’s anisotropy parameters have been standarized (See [4])

3.1 Calibration of Elasto-plastic Parameters

In this paper, we study different materials (DP600 dual phase steel and AA6111-T4 aluminium) and hardening con-
figurations. In [6] it is shown that to fit the elasto-plastic hardening parameters, the uniaxial tensile test is not enough
to reproduce and identify a valid combination of material parameters for a combined hardening model and cyclic ex-
periments must be performed. The lack of experimental data and the difficult attainment of these tests (specially the
in-plane compression phase) leads to obtain these parameters by the uniaxial tensile experimental data and a subsequent
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Box 1: Implicit stress integration algorithm.

1. Trial elastic predictor; geometric preprocessor: given t+∆t
0F, t

0Fp and t
0γ, compute the trial elastic predictor

state

tr Fp := t
0Fp; tr Fe := t+∆t

0Ft
0Fp

tr Ee :=
1
2

ln(tr FT
e

tr Fe); trT|eint :=
dΨint(tr Ee)

dtr Ee

2. Check yield condition and test for plastic loading

trk := tk
tr fT := fT (trT|eint,

trk) = trT|eint : NT : trT|eint −
2
3

trk2

IF tr fT ≤ 0 THEN

Elastic step: set t+∆t(•) = tr(•)
ELSE

Plastic step: Proceed to step 3
ENDIF

3. Return mapping

(a) Local Newton iterations: elastic corrector

Solve iteratively R(t+∆t Ee,∆γ) =

{
t+∆tρ

t+∆t fT

}
= 0 using the Newton-Raphson method with initial values

for first iteration t+∆t E(0)
e = tr Ee, ∆γ(0) = 0 and t+∆tk(0) = k(tγ)

(b) Update the state variables

t+∆tT|trint '
t+∆tT|eint =

dΨint(Ee)
dEe

∣∣∣∣∣
t+∆t

Perform mappings to stress/strain quantities, e.f compute the consistent elastoplastic tangent modulus
during this phase.

(c) Compute consistent tangent and update plastic deformation gradient t+∆t
0Fp

4. Perform mappings to the stress and strain quantities, e.g. t+∆tS and t+∆t
0 A in the case of Total Lagrangian

formulations.

5. EXIT

validation in a finite element method framework. This said, the fit of the hardening model parameters is achieved by
the use of the least-squares method. Table 1 contains the followed nomenclature in this work and Table 2 summarizes
the set of parameters for each analysed material. Parameters are curve-fitted into a Voce-type isotropic hardening law:

k = k0 + H̄γ + (k∞ − k0)(1 − e−δγ) (20)

Material #146 (AA6111-T4) has been calibrated following a Swift-Nadai hardening law as shown in Fig. 3. In
Materials #115, #118 and #122 (DP600), curves has been fitted into experimental data points (Fig. 4). The part of the
curves represented is the tensile plastic range of the material model. Note that only a combined hardening approach
results in a successful curve fit. One of the main reasons is the ’so-called’ Bauschinger effect which causes a reduction
of the yield stress upon reverse loading after plastic deformation as presented in [8]. As stated in [5, 8], the single use
of an isotropic hardening law results in an unreliable prediction of springback. In Section 3.2.2, this will be a matter of
discussion. Fig. 5 shows the r-value anisotropy predicted by our model in application to Material #146.
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Table 2: Material Parameters.

Material #146 #115 #118 #122
E 70 500 192 875 192 875 192 875
ν 0.34 0.33 0.33 0.33
k0 181.24 325 321.23 322.64
k∞ 248.28 726 - 624.10
H̄ 782.94 104.21 0 - 351.27
δ 50.836 20.083 a 0 27.594
b/a 1.4371 1 1 1
c/a 1.5679 1 1 1
f /a 0.9207 1 1 1
g/a 1.0000 1 1 1
h/a 1.0000 1 1 1
2µint 52 611.94 145 018.80 143 335.20 143 966.13
2µkin 0 0 1 683.6 1 052.7
a This parameter value matches extremely well with the equivalent one presented in [5].

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

200

250

300

350

Figure 3: Calibration of Material #146. Nadai Hardening Law Adjustment from [7] and fit of isotropic parameters.

3.2 FEM Modeling and Simulation Results

Simulation will be carried out in the commercial software ADINA®. Both simulation benchmarks presented are static
implicit analyses. Modeling techniques may be found by the reader in [3].

3.2.1 Unconstrained Cylindrical Bending Test

The Unconstrained Cylindrical Bending Test is one of the problems addressed as a benchmark at the 5th International
Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes (Numisheet 2002). Even though
its importance is relative when it comes to industrial application, its severe springback problems lead to a perfect and

7
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Figure 4: Calibration of Material #115 (NLIH; Nonlinear Isotropic Hardening), Material #118 (LKH; Linear Kinematic
Hardening) and Material #122 (NLIH + LKH; Combined Hardening).
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Figure 5: Evolution of the coefficient of anisotropy (r-value) in the plane of the sheet metal for Material #146. Com-
parison with Xu2012 [7].

sensitive environment of structural analysis [9]. That is the reason experimental results are quite dissimilar to others
(under the same laboratory conditions). This is also comparably to numerical testing. Experimental results have been
obtained from [10].

The experimental set-up is shown in Fig. 6. The dimensions of the model parameters are presented in Table
3. Assuming that the punch is initially in contact with the sheet, the bending process spans the whole punch stroke.
This leads to a final concentric layout of the cylindrical surfaces (R1 and R2). Note that a clearance of 0.5mm per
radial contact is left behind. As proposed in Numisheet 2002 [10], the punch and the die are assumed as rigid contact
surfaces. 3D Contact (µ = 0.1348) is assumed between the hardened tools and the sheet. An interested reader may find
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useful [3] for a proper and accurate adjustment of the contact and friction parameters. Symmetry has not been taken
into account in order to not intercede in the unconstrained approach of the analysis. Meinders et al. in [9] demonstrated
that the punch velocity has just a minor effect on the springback angle results. Anyhow, the punch speed has been set
to 500 mm/s as proposed in [7]. The initial blank (120 mm x 30 mm x 1 mm) is meshed with our 8-node Q1/P0 brick
mixed u/p finite elements (270 x 10 x 1). The rest of the meshes are presented in Fig. 7.

Fig. 8 shows the deformed shape of the metal sheet at punch stroke = 14 mm and the definition of the angle
between OI and OJ (ψ). Points I and J are used to mark the critical points of the punch (target surface). The critical
points are the last nodes to get in contact with the blank upper surface (contactor surface). Point O is the centre of the
cylindrical punch. In Table 4 a correlation between time (t), punch stroke (PS) and angle (ψ) is presented. Note that
the punch stroke is a function of time and the already defined punch velocity. In Fig. 13 a comparison between this
work, experimental data and [7] is given. This example proves that our material model applied to 8-node Q1/P0 brick
mixed u/p finite elements performs the contact problem extremely well and provides a very precise calculation of the
forming angle throughout the whole bending process.

The angle used to measure the forming and after-springback deformed blank geometry is shown in Fig. 14.
Springback phase is simulated by the use of contact death and tooling removal. Figs. 9, 10, 11 and 12 show the effective
stress of the deformed specimen during the bending phase and after springback is completely finished. Table 5 includes
the experimental and simulations results of [7] solid-shell and this work’s simulation results. The results confirm a
better prediction of the forming angle (θ1) over the springback angle (θ2) in line with the benchmark results analysis
presented in [9] and [10]. Fig. 15 shows the typical global convergence rates of the algorithm for this simulation. To
improve the nonlinear analysis convergence of this model, the line search algorithm provided by ADINA® has been
implemented into the model.

Punch

Sheet

Die

Figure 6: Isometric view of the tooling geometry layout of the unconstrained cylindrical bending test.

Table 3: Evolution of ψ as a function of the punch stroke and corresponding time.

Model Parameter (mm) Model Parameter (mm)
Punch radius (R1) 23.5 Sheet thickness 1.0
Die radius (R2) 25.0 Punch width 50.0
Die shoulder radius (R3) 4.0 Punch stroke 28.5 a

Die width 50.0 Sheet width 30.0
a Punch stroke = 27.5mm + blank thickness
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Figure 7: FE model for unconstrained bending problem.

O

I J

T T
TTT

Figure 8: Deformed shape at PS = 14 mm. Definition of angle ψ.

Figure 9: Effective stress at the end of the forming phase. Front view.

10

DOI: 10.13009/EUCASS2019-1026



ANISOTROPIC ELASTOPLASTICITY ON SPRINGBACK PREDICTION

Figure 10: Effective stress at the end of the forming phase. Perspective view.

Figure 11: Effective stress after springback. Front view.

Table 4: Correlation between time, punch stroke and angle.

Angle [◦] Punch Stroke [mm] Time a [s]
ψ1 = 17.65 PS1 = 7 t1 = 0.024 b

ψ2 = 60.00 PS2 = 14 t2 = 0.038
ψ3 = 116.47 PS3 = 21 t3 = 0.052
ψ4 = 158.82 PS4 = 28.5 t4 = 0.067
a Punch speed = 500 mm/s
b Effective contact starts at t* = 0.015

3.2.2 Draw-Bending Test

This second simulation example reproduces the process of "bending under tension" or draw-bending test. Its analysis
consists in the prediction of springback in a narrow sheet metal strip and its impact is considerably substantial as it
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Figure 12: Effective stress after springback. Perspective view.
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Figure 13: Comparison of the angles between OI and OJ (ψi).

Table 5: Comparison of the angles before and after springback.

θ1[◦]: Forming angle θ2[◦] Springback angle
Ex-01 20.5 56.5
Ex-02 21.1 56.1
Ex-03 20.3 58.1
Ex-04 20.6 57.2
Xu2012 [7] 21.2 59.1
This work 20.9 54.1

presents similarities with industrial sheet forming operations. In this process, the strip is subjected to a pre-bending
phase, a posterior bending phase and a last removal phase from the tooling. The machine involved in the experiments
consist of two clamps jaws in which the flat strip is located as addressed in [5, 6]. These jaws are positioned in a
perpendicular way to each other in order to let the strip bend over a roller. The roller, which may be fixed or rotating,
is simulated by a rigid cylindrical surface. The contact between the strip and the roller is presented as a 3D Contact
problem with a friction coefficient of µ = 0.02 as the roller is considered to be a rotating bending tool. Fig. 16 shows
the experimental layout of the test. While the left clamping zone is controlled by terms of displacement, the right one
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Figure 14: Definition of the angle to measure forming and after-springback geometry.

Figure 15: Typical global convergence rates obtained from ADINA® at the initial stage of the unconstrained bending
process.

is subjected to a tensile force. As suggested in [6] the tensile force has been set to F = αAσy0, where F is the tensile
force, A is the sheet metal section area, σy0 is the initial yield stress and α is a correction factor (α = 0.5). After being
drawn up to a prescribed distance ∆x = 95 mm, the specimen is unloaded and removed from the tooling in order to
let it spring-back. The strip is initially a 356 mm x 50 mm x 1 mm blank meshed with our 8-node Q1/P0 brick mixed
u/p finite elements (170 x 5 x 1). Elseways, the geometric parameters of the roller are R = 5 mm and L = 60 mm. An
isometric view of the meshes at the start of the pre-bending process is shown in Fig. 17.

As it can be seen in Fig. 18, using only an isotropic hardening law (Material#115) leads to an overprediction of
the springback in the specimen while the alone use of kinematic hardening (Material#118) leads to an underprediction
of the studied phenomenon. Therefore, it is necessary to use a combined hardening approach (Material #122) in
order to obtain a successful prediction of the springback geometry (the most fitted case in the plastic zone of the strip
profile). Note that the value of the correction factor has a major influence on the right flat zone of the strip profile.
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This imbalance could be fixed with the calculation of the correct value of the tensile force in the experiment or the
re-calibration of the material model by adjusting the kinematic contribution (adjustment of τyc; see [1]). In order to
keep this paper in some reasonable dimensions, this case study will not be considered. An interested reader may find
usefulness in the reading about this correction factor or "normalized back force" in [11].

R

Strip

Roller

F

x

Figure 16: Isometric view of the tooling geometry of the draw-bending test during the drawing phase.

Figure 17: Isometric view of the FE model for the draw-bending test.
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