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Abstract
Visual Odometry is very important for a mobile robot, above all in a planetary scenario, in such a way

to accurately estimate the rover occurred motion. The present work deals with the possibility to improve
a previously developed Visual Odometry technique by means of additional image processing, together
with suitable mechanisms such as the classical Extended/Iterated Kalman Filtering and also Sequence
Estimators. The possible employment of both techniques is then addressed and consequently a better
behaving integration scheme is proposed. Moreover, the eventuality of exploiting other localization sensors
is also investigated, leading to a final multi-sensor scheme.

1. Introduction

This work preliminarily quotes a Visual Odometry technique, previously developed at GRAAL Lab, for the estimation
of the relative poses assumed by a moving vehicle at discrete instants of time (for details about the developed VO
algorithm refer to [1], [2], [3] and [4]). Then it approaches the problem of improving the VO-provided estimation
sequences: the suggested method reasonably plans to add to two successive acquisitions a further one linking the two;
moreover suitable mechanisms allowing a sensible reduction of the drifting errors, generally occurring when the abso-
lute poses are deduced via summation of the relative ones, can be devised. More specifically, to the aim of such drifting
reduction, state estimation techniques (Extended Kalman Filtering and/or Iterated Kalman Filtering) are formerly sug-
gested. Then, as an alternative to state estimation, the better technique of sequence estimation, even if computationally
a little more cumbersome, is also suggested and tailored to the problem. Moreover the possibility of suitably integrat-
ing the two techniques (state estimation and sequence estimation) into an overall scheme, better behaving than when
using the same technique separately, is analyzed and then suggested to be adopted. Finally the possible integration
of other sensors (namely Inertial management Units, or IMU, and Wheel Odometry, or WO, systems) is also briefly
investigated within the definition of an overall resulting, further improved, multi-sensor integration scheme.

2. Visual Odometry based Additional Image Processing

The Visual Odometry technique, once per-se considered, can be seen as nothing more than a sensing system capable of
progressively constructing, generally in the form of assumed independent estimates, the chained set of frames of Fig. 1;
each frame is associated to a point located on a realization of a path traveled by a vehicle, without actually keeping
into account anything about its specific motion characteristics. In Fig. 1, each couple i−1ri,

i−1 θi (relative position and
orientation) represents the true realized motion, completely defining the relative position of frame < i > with respect
to its antecedent < i − 1 >; concerning this, the VO technique progressively provides their estimates, that is the couple
of quantities i−1r̂i,

i−1 θ̂i, characterized by the associated variances i−1Σi,
i−1 Θi respectively, also provided by the VO

technique itself. Note that just for sake of simplicity we have assumed the two estimates i−1r̂i,
i−1 θ̂i as uncorrelated

among them (no cross-variance terms have been actually evidenced). As we shall see in the sequel, this assumption
will however generally reveal without loss of generality. Moreover also note that, due to the specific way the Visual
Odometry actually works, each couple of estimates i−1r̂i,

i−1 θ̂i can be considered as independent from all the others;
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Figure 1: Sequence of positions-orientations attained by the vehicle

this fact allows to write the following relationships

i−1ri = i−1r̂i + i−1εi ; i−1εi = N
(

i−1εi, 0, i−1Σi

)
(1a)

i−1θi = i−1θ̂i + i−1ηi ; i−1ηi = N
(

i−1ηi, 0, i−1Θi

)
(1b)

with εi, ηi independent (among them as above assumed) white sequences; and further reasonably considered Gaussian
with zero mean as a working assumption. Keeping into account the above considerations, we can immediately see how
the VO technique can provide estimates of the absolute positions and orientations progressively attained by the vehicle,
only in the form (i.e. the classical product of, in this case, planar transformation matrices of each frame with respect to
its antecedent)

0T̂i = 0T̂1
1T̂2 · · ·

i−1T̂i (2a)

with

i−1T̂i =̇

[ i−1R̂i
i−1r̂i

0 1

]
; i−1R̂i =̇ R

(
i−1θ̂i

)
(2b)

which is clearly prone to an error progressively increasing with the number of stages. As a matter of fact such
evidenced drawback simply arises from the fact that the VO algorithm, as above applied, leads per-se to a linear open
chain of frames, with independent positioning of each one with respect to its antecedent, without any further constraint.
Hence, in the following we shall primarily investigate about the possibility of improving this technique, by forcing it to
provide further measurements, introducing some (probabilistic) constraints among the basic chained frames, in order to
improve the vehicle absolute localization. To this aim, a feasible possibility is that of adding to the basic measurements
the estimation of frame < i > position also with respect to frame < i − 2 >; in this way, it is possible to refer to the
progressively growing graph of frames (now including closed loops connections) reported in Fig. 2, where only the
additional estimate true values are indicated. As it can be easily seen, since the following relationships among the true

Figure 2: Adding extra image tracking to the basic ones

values always hold true (binding together two successive relative frame positions and attitudes)

i−2ri = i−2ri−1 + R
(

i−2θi−1

)
i−1ri (3a)

i−2θi = i−2θi−1 + i−1θi (3b)
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it follows that the new measurements i−2r̂i,
i−2 θ̂i can be exploited for estimation improvement purposes. Note, however,

that the assumption about the availability of the additional measurements requires that the stereo camera can recognize,
within the current frame, not only a sufficient number of features belonging to the image just before this last, but
also a sufficient number of those belonging to the two-step delayed one; this requirement, even if a little strict, seems
reasonable to be implemented.

3. State Estimation

With the introduction of the assumed additional measurements, let us first observe how the sequence of acquisitions
consequently evolves during time, with the aid of the scheme of Fig. 3. Then let us decompose the process into stages

Figure 3: The considered sequence of stages

corresponding, each one, to when the interlaced additional acquisition i−2r̂i,
i−2 θ̂i has been completed, as indicated in

Fig. 3; and then observe how the so resulting process can be modeled via the use of the following couple of separate,
interacting, state-space models

• Basic Relative-Orientation dynamic[ i−1θi
i−2θi−1

]
=

[ 0 0
1 0

][ i−2θi−1
i−3θi−2

]
+

[ 1
0

]
i−1θ̂i +

[ 1
0

]
i−1ηi x1

i = A1x1
i−1 + B1u1

i + B1ξ
1
i (4a)[ i−2θ̂i−1

i−2θ̂i

]
=

[ 0 1
1 1

][ i−2θi−1
i−1θi

]
−

[ i−2ηi−1
i−2ηi

]
y1

i = C1x1
i + ζ1

i (4b)

• Basic Relative-Position dynamic[ i−1ri
i−2ri−1

]
=

[ 0 0
I 0

][ i−2ri−1
i−3ri−2

]
+

[ I
0

]
i−1r̂i +

[ I
0

]
i−1εi x2

i = A2x2
i−1 + B2u2

i + B2ξ
2
i (5a)[ i−2r̂i−1

i−2r̂i

]
=

[ 0 1
1 R

(
i−2θi−1

) ][ i−2ri−1
i−1ri

]
−

[ i−2εi−1
i−2εi

]
y2

i = C2

(
i−2θi−1

)
x2

i + ζ2
i (5b)

where also the compact standard notation has been reported (with obvious meaning of the introduced symbols). In
particular note how the interaction between the two systems is solely represented by the influence that the component
i−2θi−1 of the first system state exerts on rotation matrix R

(
i−2θi−1

)
which in turn appears within the second output of

the second system. This is actually the sole cause of non-linearity of the resulting overall system that otherwise would
have been fully linear and stationary. The signal flow scheme reported in Fig. 4 clearly shows the indicated interaction
occurring between the two systems.

3.1 Extended Kalman Filtering (EKF)

The above introduced overall state space system (i.e. the aggregation of the two) results into a linear time-invariant
one as regards its dynamic part, while it is partially non-linear in its overall output vector, as previously evidenced.
As a consequence of this the overall system appears to be very suitable (i.e. certainly more suitable than systems
exhibiting non-linearities also in their dynamic part) for having its state to be recursively estimated via the well known
and celebrated EKF technique [5]. More precisely, by formally aggregating the two systems into the following overall
one (again, with an obvious meaning for the introduced symbols)

xi = Axi−1 + Bui + Bξi Qi =̇ cov (ξi) = Bdiag
(

i−1Θi,
i−1Σi

)
(6a)

yi = C
(

i−2Θi−1

)
xi + ζi S i =̇ cov (ζi) = Bdiag

(
i−2Θi−1,

i−2Θi,
i−2Σi−1,

i−2Σi

)
(6b)
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Figure 4: Block diagram of the considered state space model

Then, by keeping into account the resulting linearity of the overall dynamic part; as well as of the kind of structured
state dependency exhibited by the output matrix C

(
i−2Θi−1

)
; it is not difficult to verify (even if a little tedious) that the

EKF associated to the above system actually takes on the form

^
x i/i−1= A

^
x i−1/i−1 +Bui (7a)

^
x i/i=

^
x i/i−1 +Ki

[
yi −C

(
i−2 ^

Θi−1/i−1

)
^
x i/i−1

]
(7b)

Pi/i−1 = APi−1/i−1AT + BQiBT (7c)
Pi/i = (I − KiHi) Pi/i−1 (7d)

with

Ki = Pi/i−1HT
i

(
HiPi/i−1HT

i + S i

)−1
(7e)

Hi =̇ C
(

i−2 ^

Θi−1/i−1

)
+ C

′
(

i−2 ^

Θi−1/i−1,
i−1 ^

r i/i−1

)
(7f)

and where C
′

(
i−2

^

Θi−1/i−1,
i−1 ^

r i/i−1

)
simply takes on the “almost empty” form

C
′
(

i−2 ^

Θi−1/i−1,
i−1 ^

r i/i−1

)
=


0 0 0 0
0 0 0 0

02×1 02×1 02×1 02×1

02×1 R
′

(
i−2

^
θ i−1/i−1

)
i−1 ^

r i/i−1 02×1 02×1

 (7g)

that is a 6 × 6 square matrix only having the last two elements of its second column as non-zero elements. Moreover,
within the indicated expression for such non zero terms we have

R
′
(

i−2 ^
θ i−1/i−1

)
=̇

−sin i−2
^
θ i−1/i−1 −cos i−2

^
θ i−1/i−1

cos i−2
^
θ i−1/i−1 −sin i−2

^
θ i−1/i−1

 (7h)

simply corresponding to the derivative w.r.t θ of rotation matrix R (θ) evaluated for i−2
^
θ i−1/i−1. We can now conclude

this section by explicitly noting how the presence of the non-zero terms in Eq. (7g) is actually the sole responsible
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for having the filter of full-order 6. In fact, as it can be easily verified, in case the non-zero terms in Eq. (7g) were
neglected, the overall filter would automatically reduce to two separate filters: the first one applied to system Eq. (3a)
and independently estimating the orientations; the second one applied to system Eq. (3b) and estimating the position
only; even if this is done by also acquiring the orientation estimates from the first filter, just for estimating (via direct
insertion of such orientation estimates) the posture dependent output matrix appearing Eq. (3b) . Obviously enough,
though neglecting such terms in Eq. (7g) certainly reduces the filter performances; the simplification gained in its
implementation might however compensate for such performance reduction, provided it reveals acceptable. Certainly
enough some simulation experiments should be performed for approving or not such conjecture.

3.2 Iterated Kalman Filtering (IKF)

The IKF [5], [6] is a quasi-optimal non-linear filter, which can actually be interpreted as an improvement introduced
in the above seen EKF; in the sense that this last can in turn be seen as a simplification of IKF. We can introduce the
filter by starting from the main part of the well known Chapman-Kolmogorov general relationship, stating that once a
dynamic system having the generic form

xi = f (xi−1, ui) + ξi (8a)
yi = g (xi) + ζi (8b)

is made available, together with the progressive collection of its output and input measurements

Ii = {(yk, uk) ; k = 1, 2, . . . , i} (9)

then, for the posterior probability density function (p.d.f.) p (xi/Ii) we have:

p (xi/Ii) =
1

Mi
p (yi/xi) p (xi/Ii−1, ui) (10)

In the above relationship, the term p (xi/Ii−1, ui) is the so-called prior p.d.f.; that is the predicted distribution of xi before
acquiring the current measurement set yi; while p (yi/xi) is instead the so-called Likelihood p.d.f; which is used for
upgrading the prior into the posterior once measurement yi is acquired. Finally quantity Mi is simply the normalizing
factor allowing the overall right-hand-side exhibiting a unitary integral within the whole space. As it is well known,
upgrading the posterior p (xi/Ii) starting from the previous one p (xi−1/Ii−1) represents the conceptual framework on the
basis of which any state estimation technique (even if of suboptimal type) must be constructed. And to this respect the
Chapman-Kolmogorov relationship Eq. (10) clearly show how the process should consequently adhere to the following
logic:

p (xi−1/Ii−1)→ p (xi/Ii−1, ui)→ • → p (xi/Ii)
↑

p (yi/xi)
(11)

Within the above logic process, and in case of non-linear dynamic, the step in the left - i.e. the evaluation of the prior
probability p (xi/Ii−1, ui) - is generally the most difficult one; which instead reveals very simple to be solved in case of
linear dynamics Eq. 6a, Gaussian noises, and also Gaussian previous prior p (xi−1/Ii−1). More precisely provided that

p (xi−1/Ii−1) = N
(
xi−1,

^
x i−1/i−1, Pi−1/i−1

)
(12)

it is well know that with a linear dynamic and white Gaussian noise, as it actually is for our case, we have

p (xi/Ii−1, ui) = N
(
xi,

^
x i/i−1, Pi/i−1

)
(13a)

with
^
x i/i−1 and Pi/i−1 just provided by relationships Eq. (7a) and Eq. (7c) respectively; here repeated and renumbered

for sake of convenience; and from now on reconsidered with respect to our case:

^
x i/i−1= A

^
x i−1/i−1 +Bui (13b)

Pi/i−1 = APi−1/i−1AT + BQiBT (13c)
(13d)
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As regard the evaluation of the Likelihood p.d.f., it is generally much easier than the evaluation of the prior, and in
particular for our case it is actually direct; since from Eq. (6b) we immediately have

p (yi/xi) = N
[
yi,C

(
i−2θi−1

)
xi, S i

]
(14)

thus leading, together with Eq. (13a) and from the general relationship Eq. (10), to the hereafter reported expression
for the posterior p.d.f. of our case:

p (xi/Ii) =
1

Mi
N

[
yi,C

(
i−2θi−1

)
xi, S i

]
N

(
xi,

^
x i/i−1, Pi/i−1

)
(15)

Note however how, despite its first glance appearance the above resulting posterior is however non-Gaussian due to the
non-linear dependence of matrix C

(
i−2θi−1

)
from the second component i−2θi−1 of the whole state xi; thus meaning that

any successive propagation of the posterior, in the same form which lead to Eq. (15), can be done only at the expense
of suitably approximating the posterior p (xi/Ii) resulting at each stage with a Gaussian one, before proceeding with the
next stage i + 1. Such an approximation leads to suboptimal estimation techniques, at least for systems exhibiting non-
linearities in the output measurements only (like the one under consideration); these methods, anyway, reveal as quite
efficient, even when compared with more sophisticated ones (like for instance the recently introduced Monte Carlo
based recursive techniques, generally leading to the Particle Filters (see [6], [7], [8]). Even if such approximations lead
to suboptimal estimation techniques, at least for systems exhibiting non-linearities in the output measurements only,
like the our, they however reveal as quite efficient, even when compared with more sophisticated ones (like for instance
the recently introduced Monte Carlo based recursive techniques; generally leading to the so-called Particle Filtering;
which are generally much more cumbersome to be implemented. Particle filtering techniques have been proposed for
explicitly dealing with systems which are mainly non linear in their dynamic part, as in Eq. (4a). They efficiently
use real time Monte-Carlo methods for propagating the prior p.d.f., since strongly influenced by the non-linearity in
the dynamic part (which however is not our case). In the following of the present section we shall briefly illustrate
how the mentioned IKF technique allows to propagate Eq. (15) in its Gaussian approximated form, with a reasonable
computation effort. To this aim reconsider Eq. (15) and formerly observe how a maximum a posteriori probability
(MAP) estimate

^
x i/i can be obtained by maximizing the r.h.s. of Eq. (15) itself with respect to xi; which is in turn the

same of solving the following minimization problem, i.e. minimizing the sum of the exponents in Eq. (15)

^
x i/i= argmin

xi

[∥∥∥∥yi −C
(

i−2θi−1

)
xi

∥∥∥∥2

S i
+

∥∥∥∥xi−
^
x i/i−1

∥∥∥∥2

Pi/i−1

]
(16)

Since the argument of the minimization in Eq. (16) is actually non totally quadratic (still due to the non-linear de-
pendence of matrix C

(
i−2θi−1

)
from the second component i−2θi−1 of the whole state xi) then, like any non-quadratic

minimization problem, a recursive numerical algorithm of gradient type, Newton type, or Newton-Rapson type, can
be used for achieving the minimum point

^
x i/i. Then, once the minimum point

^
x i/i has been achieved, an approximate

evaluation Pi/i of the estimation error covariance can be obtained as the inverse Hessian matrix of the argument of
Eq. (16), evaluated in correspondence of

^
x i/i. In case of employment of a gradient or Newton type procedure, the

analytical expression of the Hessian matrix can be a-priory deduced from the analytical expression of the argument of
Eq. (16); then its numerical value at

^
x i/i has to be extracted and then inverted. In case instead of a Newton-Rapson

procedure, the numerical value Pi/i (k) of the Hessian Inverse at the current iteration point
^
x i/i (k) is provided by the

structure of the procedure itself. Then, once
^
x i/i and Pi/i have been finally achieved, the Gaussian approximation

p (xi/Ii) ≈ N
(
xi,

^
x i/i, Pi/i

)
(17)

is introduced for passing to the next stage, and so on. Within the literature the usage of the Newton-Rapson procedure
for minimizing any non-quadratic cost resulting from a system which is non linear in its measurement equation only
(as it is in our case) is generally termed as IKF; even if we extend this terminology also to the case of employment
of any other numerical minimization technique. Finally, it is worth recalling that, still in case of employment of a
Newton-Rapson procedure, but initialized at

^
x i/i−1 and also arrested at the first iteration, the so resulting incomplete

IKF procedure actually turns out coinciding with the previously seen EKF one. A fact this last that clearly shows how
IKF always result better performing that the EKF; thus indicating the IKF as the preferable one, provided sustained by
the available computing power on-board the vehicle. We shall now conclude the present section by indicating some
investigation directions that should be followed for best adapting the IKF procedure to our case. More precisely, by
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keeping into account of the very particular structure actually attained by the output matrix C
(

i−2θi−1

)
; that is, from

Eq. (4b), Eq. (5b)

C
(

i−2θi−1

)
= Bdiag

[
C1,C2

(
i−2θi−1

)]
= Bdiag

{[
0 1
1 1

]
,

[
0 1
1 R

(
i−2θi−1

)]} (18)

with R
(

i−2θi−1

)
as in Eq. (2b); a first investigation direction could be that of trying to exploit such particularity for pos-

sibly best structuring the associate Newton-Rapson algorithm working on the whole state xi. As a second investigation
direction, we could instead consider the minimization problem embedded in Eq. (16) once rewritten as

min
i−2θi−1

{
min

xi/i−2θi−1

[∥∥∥∥yi −C
(

i−2θi−1

)
xi

∥∥∥∥2

S i
+

∥∥∥xi − x̂i/i−1
∥∥∥2

Pi/i−1

]}
(19)

Then, by noting that for given i−2θi−1 the inner minimization turns out to be quadratic, an analytical linear expression
for the resulting conditioned minimum point

^
x i/i

(
i−2θi−1

)
must necessarily be obtained of the form (by also exploiting

the particular structure of C
(

i−2θi−1

)
)

^
x i/i

(
i−2θi−1

)
= L

[
R

(
i−2θi−1

)
, yi, x̂i/i−1

]
(20)

Where L just stays for linear and which is actually valid in correspondence of any stage. The linear form in Eq. (20),
once substituted into Eq. (19) must necessarily lead to an analytical expression for the resulting value of its inner
conditioned optimal cost, say it J

(
i−2θi−1, yi, x̂i/i−1

)
, within Eq. (19) itself; thus reducing the residual minimization to

the following
min

xi/i−2θi−1

J
(

i−2θi−1, yi, x̂i/i−1

)
(21)

also valid in correspondence of any stage; whose numerical minimization now results very much simplified by the
fact that it is performed along a one dimensional set. Note however that, as regard the estimated error covariance, this
should be instead evaluated at

^
x i/i via the Hessian matrix analytical expression a-priori deduced from the argument of

Eq. (16), by possibly exploiting again the particularity Eq. (18). Finally, as a third investigation alternative, we could
also keep into account the possibility (however very unlikely) that the analytical expression of J

(
i−2θi−1, yi, x̂i/i−1

)
might

also result with an “easy-to-be-zeroed” partial derivative with respect to its first argument i−2θi−1. A fact this last that,
whenever true for our case, would actually reduce the associated quasi optimal IKF state estimation procedure, to the
simple and very fast application of some invariant analytical formulas at each stage; thus with an enormous advantage
in terms of required computational power.

3.3 Remarks

The State Estimators (STE) of IKF type, or its reduced version EKF, are both recursive filters that produce the current
stage state estimation by updating their prediction, in turn obtained from the previous estimations. Hence, since the
error occurred at any stage will not change in the future and since the absolute vehicle position ad orientation has
to be evaluated still via Eq. (2), it is consequently clear how linearly increasing errors have still to be expected for
increasing number of stages (with the only difference that such increase is now mitigated by the reduced variances of
the relative errors, due to the presence of state estimator). Obviously enough, things might be different in case the
incoming acquisitions for increasing stages could be used for producing, not only the current state estimate, but also
for bettering, at the same time, all the past state estimations. As a matter of fact this objective can be achieved via the
use of the so called Sequence Estimation (SQE) techniques, as discussed in section 4.

4. Sequence Estimation

In order to start approaching the argument, let us first introduce the here used notations for denoting the sequences of
true relative orientations and positions realized till the i − th stage

θ1,i =̇
{
k−1θk; k = 1, 2, . . . , i

}
(22a)

r1,i =̇
{
k−1rk; k = 1, 2, . . . , i

}
(22b)
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together with the aggregation of the two

X1,i =̇
{
θ1,i; r1,i

}
(22c)

and also the following others, for denoting the associated sequences of the collected measurements

z1,i =̇
{(

k−1θ̂k,
k−2θ̂k

)
; k = 1, 2, . . . , i

}
(23a)

w1,i =̇
{(

k−1r̂k,
k−2r̂k

)
; k = 1, 2, . . . , i

}
(23b)

they also aggregated into the following:

Z1,i =̇
{
z1,i; w1,i

}
(23c)

Then, once the i− th stage has been achieved, the problem to be considered here is that of finding the overall sequence
estimate

^
X

1,i
=

{
^
θ

1,i
;
^
r

1,i
}

= argmax
X1,i

p
(
X1,i/Z1,i

)
(24)

As it can be realized, provided that the problem is solvable (even in an approximate or suboptimal form), its solution
will renew, at each stage i, a batch of interpolated estimate of the entire sequence X1,i realized before it, without relying
on the estimate of the previous one X1,i−1. Due to this, we can argue about the drift errors, generally characterizing
IKF and EKF techniques: they should, in this case, result strongly reduced. Still assuming the problem solvability,
an obvious drawback is however represented by the apparent increasing dimensionality with the increasing number of
stages. The dimensionality increase is actually of linear type and so it is quite acceptable within a reasonably high
maximum number of stages, after which the obtained sequence estimate should be “freezed” and the entire procedure
then restarted along the successive maximum horizon of stages. At this point, in order to manage the problem, we shall
however consider the cascade of the following sub-problems

^
θ

1,i
=̇ argmax

θ1,i
p
(
θ1,i/z1,i

)
→

^
r

1,i
=̇ argmax

r1,i
p
(
r1,i/w1,i,

^
θ

1,i
)

(25)

where the orientation sequence is estimated on the basis of its own measurements only, while the position sequence is

evaluated in cascade, on the basis of its measurements and taking
^
θ

1,i
as a given parameter set. The need of structuring

the problem in the above suboptimal way, with respect to the original, actually arises from the necessity to maintain a
manageable implementative form that otherwise cannot be guaranteed, whenever considered within its generality as in
Eq. (24). Hence, considering the first sub-problem, formerly observe how, via standard application of the Bayes rule,
for the involved p.d.f., we actually have

p
(
θ1,i/z1,i

)
=

1
M1,i

p
(
z1,i/θ1,i

)
=

i∏
k=2

exp

−
∣∣∣k−2θk−1 −

k−2θ̂k−1
∣∣∣2

k−2Θk−1
−

∣∣∣∣(k−2θk−1 + k−1θ̂k

)
− k−2θ̂k

∣∣∣∣2
k−2Θk

+

∣∣∣k−1θk −
k−1θ̂k

∣∣∣2
k−1Θk


(26)

where the first equality simply states that the posterior p.d.f. p
(
θ1,i/z1,i

)
substantially coincides with the maximum like-

lihood one p
(
z1,i/θ1,i

)
since the prior p

(
θ1,i

)
is actually uniform; on the other hand, the second equality follows directly

from the assumed independence and Gaussianity of the added measurement noises. Then we note how maximizing
Eq. (26) is equivalent to the following minimization problem:

^
θ

1,i
=̇ argmin

θ1,i

i∑
k=2


∣∣∣k−2θk−1 −

k−2θ̂k−1
∣∣∣2

k−2Θk−1
+

∣∣∣∣(k−2θk−1 + k−1θ̂k

)
− k−2θ̂k

∣∣∣∣2
k−2Θk

+

∣∣∣k−1θk −
k−1θ̂k

∣∣∣2
k−1Θk

 =̇ argmin
θ1,i

J1,i
(
θ1,i

)
(27)

Moreover, since by isolating the first stage Eq. (27) can be equivalently rewritten as

min
θ2,i

min
0θ1


∣∣∣0θ1 −

0θ̂1
∣∣∣2

0Θ1
+

∣∣∣∣(0θ1 + 1θ2

)
− 0θ̂2

∣∣∣∣2
0Θ2


/1θ2

+

∣∣∣1θ2 −
1θ̂2

∣∣∣2
1Θ2

+ J2,i
(
θ2,i

) (28)

(being J2,i
(
θ2,i

)
the same of Eq. (27) even if now starting from k = 3) it then follows that within Eq. (28) we can

actually proceed as hereafter indicated.
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1. Minimize the first part for given 1θ2: since the part to be minimized is quadratic, the result will be linear in 1θ2;
thus obtaining the following linear parameterization:

0 ^
θ 1= L1

(
1θ2

)
(29a)

2. Substitute the result of Eq. (29a) into Eq. (28) (the result will necessary be a quadratic function of 1θ2) and define:

Q1

(
1θ2

)
=̇ min

0θ1

[
|0θ1−

0 θ̂1|
2

0Θ1
+
|(0θ1+ 1θ2)− 0 θ̂2|

2

0Θ2

]
/1θ2

(29b)

3. Extract from J2,i
(
θ2,i

)
its first three terms. Then group the first two with Q1

(
1θ2

)
(naming it Q̄2

(
1θ2,

2 θ3

)
); thus

obtaining

min
θ2,i

Q̄2

(
1θ2,

2θ3

)
+

∣∣∣2θ3 −
2θ̂3

∣∣∣2
2Θ3

+ J3,i
(
θ3,i

) (29c)

where J3,i
(
θ3,i

)
is obviously the same as in Eq. (28) even if now starting from k = 4 and where by construction:

Q̄2

(
1θ2,

2θ3

)
= Q1

(
1θ2

)
+

∣∣∣1θ2 −
1θ̂2

∣∣∣2
1Θ2

+

∣∣∣∣(1θ2 + 2θ3

)
− 1θ̂3

∣∣∣∣2
1Θ3

(29d)

4. Finally rewrite Eq. (29c) similarly to Eq. (28) as

min
θ3,i

min
1θ2

Q̄2

(
1θ2,

2θ3

)
/1θ2

+

∣∣∣2θ3 −
2θ̂3

∣∣∣2
2Θ3

+ J3,i
(
θ3,i

) (29e)

and return to the first point, repeating all the steps with respect to Eq. (29e) (and so on for all successive stages).
Note that the linear parameterization k−1

^
θ k= Lk

(
kθk+1

)
at the current stage k, represents the constraint for the

previous stage, according to the back substitution scheme depicted in Fig. 5.

Figure 5: Back substitution scheme

When the i − th stage is finally reached, assuming that no more measurements are acquired (or equivalently
assuming that the procedure has to be stopped at such a stage) the last minimization problem (consider that in corre-
spondence of the last stage Ji,i

(
θi,i

)
=̇0) can be written as

min
θi−1,i

Q̄i−1

(
i−2θi−1,

i−1θi

)
+

∣∣∣i−1θi −
i−1θ̂i

∣∣∣2
i−1Θi

 (30)

which can be here performed directly with respect to both i−2θi−1,
i−1θi, thus obtaining their estimations i−2

^
θ i−1,

i−1
^
θ i.

Hence, such numerical values can be used to realize the above back substitution scheme; this procedure actually

9
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corresponds to the well known Forward Dynamic Programming (FDP) technique, here applied to sequence estimation
problems. This method requires to wait until the last i − th stage before providing the estimate of the orientation
sequence realized till such stage. Nevertheless, it could also be implemented in such a way that, while the forward
phase proceeds, the backward phase is however executed in correspondence of any new incoming stage. In this way,
the procedure would totally renew the interpolated sequence in correspondence of each new arrived stage till the last
one. Note how the sole backward phase is the one working with a computational effort increasing with the number of
stages; thus a limit to the maximum number of processable stages should be substantially established only on this basis.
Once the farthest allowed stage is reached, the procedure can be restarted by trivially considering such farthest stage
as the new initial one. In such a way drifting errors, occurring within a cascade of long stage batches, would result
much more contained than in the case of state filtering techniques. Considering now the sub-problem of estimating the
position sequence, just observe that (again via the standard Bayes rule)

p
(
r1,i/w1,i,

^
θ

1,i
)

= 1
H1,i

p
(
w1,i/r1,i,

^
θ

1,i
)

p
(
r1,i

)
= p

(
w1,i/r1,i,

^
θ

1,i
)

=
i∏

k=2
exp

[
−

∥∥∥k−2rk−1 −
k−2r̂k−1

∥∥∥2
k−2Σ−1

k−1
+

−

∥∥∥∥∥[k−2rk−1 + R
(

k−2
^
θ k−1

)
k−1rk

]
− k−2r̂k

∥∥∥∥∥2

k−2Σ−1
k

−
∥∥∥k−1rk −

k−1r̂k

∥∥∥2
k−1Σ−1

k

] (31)

where, as assumed within the (suboptimal) problem statement in Eq. (25),
^

θ1,i has to be taken as a given set of param-
eters without any probabilistic characterization. Then, under this assumption, the first line of Eq. (31) again states that
the posterior p.d.f. substantially coincides with the maximum likelihood one, since the prior p.d.f. is actually uniform.
Moreover Eq. (31) holds thanks to the assumed independence and Gaussianity of the added measurement noises. Then,
just as before, maximizing Eq. (31) is equivalent to the following minimum problem:

^
r

1,i
=̇ argmin

r1,i

i∑
k=2

[∥∥∥k−2rk−1 −
k−2r̂k−1

∥∥∥2
k−2Σ−1

k−1
+

∥∥∥∥∥[k−2rk−1 + R
(

k−2
^
θ k−1

)
k−1rk

]
− k−2r̂k

∥∥∥∥∥2

k−2Σ−1
k

+
∥∥∥k−1rk −

k−1r̂k

∥∥∥2
k−1Σ−1

k

]
=

=̇ argmin
r1,i

H1,i
(
r1,i

)
(32)

Since for given
^
θ

1,i
the functional to be minimized in Eq. (32) actually exhibits the same structure of its analogous in

Eq. (27), all considerations provided for the previous problem in Eq. (27) can be again applied to Eq. (32), thus leading,
also for the positions, to a strictly similar FDP based sequence estimation algorithm. This actually follows from the

assumption of considering the angular sequence estimates
^
θ

1,i
as a given parameter set: suboptimality is accepted,

since otherwise a joint estimation (very difficult for the non-linearity) of both sequences θ1,i; r1,i would be required.
Moreover, a drawback of such an implementation is unfortunately exhibited by the sequence position estimation, that

is by the need of waiting till the i− th stage for acquiring
^
θ

1,i
and executing the position forward and backward phases.

Hence, in order to renew
^
θ

1,i−1
;
^
r

1,i−1
into

^
θ

1,i
;
^
r

1,i
, at each stage the following operations must be achieved:

1. Upgrade the forward phase of the orientation sequence estimator.

2. Perform its entire backward phase, thus obtaining
^
θ

1,i
.

3. Perform the entire forward phase of the position sequence estimator, given
^
θ

1,i
.

4. Perform its entire backward phase, thus obtaining
^
r

1,i
.

This until a maximum allowed distance j− stage is achieved, after which a new sequence is restarted. In the following
section we shall see how the integration of a state estimator with a sequence one might further bettering the overall
estimation performances, while also allowing an efficient management of the available computing power.

5. Exploiting Multiple Sensors

Generally speaking, multi-sensor integration means suitable exploitation of different sensors providing measures of
the same set of variables, in order to obtain an augmented sensor characterized by better performances.In this sense
the VO technique can be seen as a component sensor that, based on its own internal procedures, at each stage i adds

10
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the set of measurements i−2θ̂i−1,
i−1 θ̂i;i−2 r̂i−1,

i−1 r̂i (plus the auxiliary ones i−2θ̂i;i−2 r̂i) of the associated variables, to the
collection θ̂1,i−1, r̂1,i−1 of the identical measurements (here also including the auxiliary ones) acquired till the previous
stage. Then, accordingly with the previous section, the VO sensor can be integrated with a state estimator (EKF or

Figure 6: Alternative basic integration schemes

IKF) or, alternatively, with a sequence estimator, in order to obtain better performances, in terms of the variances of
the produced estimates (we shall now say θ̃1,i−1, r̃1,i−1 for the state estimators and θ̄1,i−1, r̄1,i−1 for the sequence one).
Besides the two separate schemes shown in Fig. 6, it could be interesting trying to integrate these two alternatives
together, obtaining a tentative scheme for the integration of the three sensor components, as in Fig. 7 (neglect for
a while the indicated feedback loop). The rationale for such a scheme follows immediately from the intuitive idea

Figure 7: A preliminary tentative integration scheme

that, being the SQE module fed with measurements characterized by smaller variances that those provided by the VO
module alone, it should in turn provide sequence estimations with further smaller variances. Moreover, the indicated
feedback loop could be used when the maximum allowed distance is achieved, in order to re-initialize the STE module
with θ̄1, j, r̄1, j, that is with the hereafter indicated terms

(
j−2θ̄ j−1,

j−1 θ̄ j

)
;
(

j−2r̄ j−1,
j−1 r̄ j

)
→

{ j−2θ̄ j = j−2θ̄ j−1 + j−1θ̄ j
j−2r̄ j = j−2r̄ j−1 + R

(
j−2θ̄ j−1

)
j−1r̄ j

(33)

in such a way to allow the STE module restarting from stage j with better initial condition and then repeating the entire
process for the next batch of stages of maximum length j. Within the above tentative scheme, the idea is to use the STE
module in such a way to know (even if less accurately) the vehicle position with respect to the last estimation produced
by the SQE.

Unfortunately enough, however, this integrated scheme does not produce any bettering (nor any worsening) with
respect to the STE estimation alone. In fact, since the SQE is fed with the STE-provided measurement sequence
θ̄1, j, r̄1, j, where in correspondence of each sequential couple of its component we must also evaluate (similarly to
Eq. (33) but in correspondence of each intermediate stage i till the j − th one)

(
i−2 ^

θ i−1,
i−1 ^θ i

)
;
(

i−2 ^
r i−1,

i−1 ^r i

)
→


i−2

^
θ i=

i−2
^
θ i−1 + i−1

^
θ i

i−2 ^
r i=

i−2 ^
r i−1 +R

(
i−2

^
θ i−1

)
i−1 ^

r i
; i = 1, 2, . . . , j (34)
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it is easy to see that the corresponding forms of Eq. (28) and Eq. (32), to be minimized inside the SQE, are both zeroed
(thus absolutely minimized) just by the same STE-provided sequence: this makes the first suggested scheme totally
useless. On the other hand, this result is totally coherent with the fact that, once the information has been processed by
the STE, the estimation cannot at all be bettered without adding more information (i.e. without acquiring more data).
Hence, STE and SQE can be integrated only if they run in parallel, as indicated in Fig. 8.

Figure 8: The correct integration scheme

Now that the correct integration scheme between STE end SQE has been established, we can proceed further on
by also adding new sensors, like for instance Inertial Management Units (IMU) and/or classical Wheel Odometry (WO)
sensor systems (generally present on-board most vehicles), which could improve both the STE and SQE modules.

5.1 State Estimator Improvement

Firstly, consider the case of an IMU system located on-board the vehicle; such a sensor provides (substantially in
a continuous-time manner) measurements about the angular velocity vector ω and the linear acceleration vector v̇,
both projected on the vehicle frame. Since we are for now assuming planar motion only (more general cases will be
subjected to further studies), the angular velocity vector will always be about the vertical axis and so its projection on
both the vehicle and the absolute frame is the same (we shall indicate it simply as ω). On the other hand, the linear
acceleration vector, still due to the planar motion assumption, will always lie on the horizontal plane (we will denote
its two-dimensional projection on the horizontal plane of the vehicle frame simply as vector a). Thus the continuous
time (typically noisy) measurements provided by an IMU system are typically of the form

ω̃ (t) = ω (t) + e1 (t) (35a)
ã (t) = a (t) + e2 (t) (35b)

with e1 (t) , e2 (t) assumed continuous-time zero mean white stationary Gaussian noises (for simplicity also uncorre-
lated between them) with covariance functions E1δ (τ) and E2δ (τ), respectively (δ (τ) is the Dirac unit impulse func-
tion). In particular note how, from a kinematic point of view, the IMU actually provides first order information for the
orientation (the angular velocity measurements ω̃ (t)) and second order ones for the positions (the linear acceleration
measurements ã (t)). Considering now a generic stage i and the associated time instant ti in correspondence of which
the last measurement acquisition by the VO has been performed, the following integral process, starting at the instant
ti−1

i−1θ̃ (t) =̇

t∫
ti−1

ω̃dt = i−1θ (t) + i−1µ (t) (36a)

with

i−1θ (t) =̇

t∫
ti−1

ω (t) dt (36b)

i−1µ (t) =̇

t∫
ti−1

e1 (t) dt ; i−1M (t) = E1 (t − ti−1) (36c)

12
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provides a continuous-time measure of the vehicle orientation with respect to frame < i − 1 >, while moving between
time instants ti−1 and ti. Moreover such an estimation becomes an additional measurement i−1θ̃i of the angle i−1θi at
time t = ti, namely:

i−1θ̃i = i−1θi + i−1µi ; i−1Mi = E1 (ti − ti−1) =̇ E1Ti (37)

We can note in Eq. (36c) how the superimposed equivalent noise i−1µ (t) obviously results into a zero mean Wiener
process (i-e. a so-called random walk with independent increments), exhibiting the linearly time increasing covariance
matrix indicated in the second of Eq. (36c) (in turn becoming the one in Eq. (37) at time ti).Further note how the
equivalent noise sequence i−1µi in Eq. (37) results into a zero mean white Gaussian one -with covariance as in Eq. (37)-
since it is composed by a sequence if disjoint integrals of the continuous time zero mean white Gaussian noise e1 (t)
(as a matter of fact it would have been sufficient to have the noise e1 (t) uncorrelated for time delays greater than the
integration interval Ti). Similarly, for the continuous time measurement ã, recalling relationship of Eq. (3a), observe
that, kinematically

i−2ri = i−2ri−1 + R
(

i−2θi−1

)
i−1ri = i−2ri−1 + Ti

i−2vi−1 + R
(

i−2θi−1

)
i−1h2

i (38a)

where i−2vi−1 is the vehicle velocity at time ti−1 projected on frame < i − 2 >; moreover Eq. (38b) shows the double
integral of the true vehicle acceleration projected on frame < i − 1 > during the time interval ti−1, ti, just corresponding
to the contribution to the position with respect to < i − 1 > provided by the acceleration itself.

i−1h2
i =̇

ti∫
ti−1

dτ

τ∫
ti−1

R
[
i−1θ (τ)

]
a (τ) dτ (38b)

Furthermore, note that for the velocity i−2vi−1 kinematically we have

i−2vi−1 = i−2vi−2 + i−2h1
i−1 (39a)

with

i−2h1
i−1 =̇

ti−1∫
ti−2

R
[
i−2θ (τ)

]
a (τ) dτ (39b)

which is the integral of the true vehicle acceleration projected on frame < i − 2 >, during the time interval ti−2, ti−1,
corresponding to the contribution to the velocity provided by the acceleration itself.

Since for i−2ri−1 kinematically we have

i−2ri−1 = Ti−1
i−2vi−2 + i−2h2

i−1 (40)

then, by deducing i−2vi−2 from Eq. (40), substituting it into Eq. (39a) and finally substituting the result into the second
of Eq. (38a), with very simple algebra we get the linear form:

i−2ri = c0
i−1

i−2ri−1 + c1
i−1

i−2h1
i−1 + c2

i−1
i−2h2

i−1 + R
(

i−2θi−1

)
i−1h2

i (41)

Then, still keeping into account the first of Eq. (38a), we can operate the following definitions:

yi =̇ c1
i−1

i−2h1
i−1 + c2

i−1
i−2h2

i−1 + R
(

i−2θi−1

)
i−1h2

i =
(
1 − c0

i−1

)
i−2ri−1 + R

(
i−2θi−1

)
i−1ri =

=̇ αi−1
i−2ri−1 + R

(
i−2θi−1

)
i−1ri

(42a)

As we can see, the l.h.s. yi of Eq. (42a) actually constitutes a global quantity which can be noisily provided by the
IMU sensor system. Consequently, provided that we can characterize the so obtained measurement ỹi in terms of added
noise to the true value yi itself (that is in the form ỹi = yi + σi with σi possibly white with known covariance), the
following relationship can be written:

ỹi = αi−1
i−2ri−1 + R

(
i−2θi−1

)
i−1ri + σi (42b)
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It then becomes clear how Eq. (42b), together with Eq. (37), once repeated for both stages i and i − 1, results in
three additional output relationships enriching the set of available measurements. Nevertheless, to this regard, observe
how the terms i−1h2

i ,
i−2 h1

i−1,
i−2 h2

i−1 composing yi in Eq. (42a), have been represented considering a (t) and ω (t) as
completely unrelated, while this is instead not the case for non-holonomic vehicles (as planetary rovers most probably
are); as a matter of fact, non-holonomic constraints might probably introduce simplifications; a fact, this last, that
should be better investigated. Finally it should also be remarked that the analytical steps which lead to Eq. (42a) and
Eq. (42b) were actually necessary in order to eliminate from the considered kinematic equations all the linear velocity
terms (since neither directly measured nor part of the adopted state space model). The integrated overall scheme
improving the STE module with the inclusion of the IMU system, obviously results into the one reported in Fig. 9.
Note however how the scheme also anticipates the presence of a block relative to the wheel odometry, that can be it also

Figure 9: Improving the State Estimator

integrated into the overall system. A wheel odometry system can directly provide, in a substantially continuous-time
manner, the measurements

_
ω,

_
v of the vehicle angular velocity ω and its velocity vector v projected on the vehicle fixed

frame. These WO estimates are real-time obtained from the measured rotation velocities of the vehicle wheels and are
generally handled within a specific (internal to the WO system itself) least squares algorithm or even a specific state
estimator. The WO module continuous time measurements can be expressed as

_
ω (t) = ω (t) + n1 (t) (43a)
_
v (t) = v (t) + n2 (t) (43b)

where n1 (t) and n2 (t) are continuous-time zero mean white stationary Gaussian noises with covariance functions
N1δ (τ) ,N2δ (τ), respectively. In particular note that, since the WO module actually provides first order measurements
for both orientation and position, for the angular velocity measurement in Eq. (43a), similarly to Eq. (37), we can write

i−1 _
θ i=

i−1θi + i−1ρi ; i−1θi =̇

ti∫
ti−1

ω (t) dt (44a)

where the resulting equivalent additional sequence noise (zero mean white Gaussian) expressed as:

i−1ρi =̇

ti∫
ti−1

n1 (t) dt ; i−1Zi = N1 (ti − ti−1) = N1Ti (44b)

Moreover, from the first order kinematics we have

i−1ri =

ti∫
ti−1

R
[
i−1θ (t)

]
v (t) dt (45)

simply corresponding to the integral of the velocity projected on < i − 1 >; since such integral results into a (noisy)
quantity that can be measured by the WO system, provided that we can characterize its resulting measure i−1 _

r i it also
in terms of added noise, that is as

i−1 _
r i=

i−1ri + i−1λi (46)
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it then follows that Eq. (44a) and Eq. (45), once considered for both stages i and i − 1, actually result into further six
additional measurements to be used for improving the estimation.

5.2 Conclusions and Comments

Within this paper, a technique to improve rover localization has been suggested; this method employs a Visual Odom-
etry algorithm that has been previously developed at GRAAL Lab. Such a technique can result more efficient, above
all for planetary scenarios, as, generally, it is less affected by terrain roughness and slopes that can cause slippage
than other on-board sensors. Visual Odometry, as explained, can be improved through the action of state or sequence
estimators; furthermore, since a rover is generally endowed also with other sensors, such as classical wheel odometry
or inertial measurement units, a multi-sensory integration scheme has been proposed. Anyway, some open issues have
been pointed out: first of all, this idea is still under consideration and many simulations and experimental tests have to
be carried out. Then, as already suggested, the method is to be extended to more wide motion cases, that is foreseeing
not only planar rover movements. Moreover, the method probably might be simplified, mostly taking into account the
mentioned non-holonomic constraints for the rover. Finally, it should be noted how the devised multi-sensor integra-
tion scheme actually qualifies itself as a “Visual Odometry Centric” scheme: this in the sense that the STE and SQE
modules, plus the associated additional sensors, have been adapted to the state space model describing the VO module.
In case we had instead started from IMU and/or WO sensor systems, the state space model most probably would have
changed, becoming a discrete time, kinematic, state space model (possibly including the vehicle velocities as part of
the state), instead of the two-step delay one resulting from the VO. Consequently the eventual successive integration of
a VO system should have been adapted to such kinematic model, thus possibly leading to an integration scheme with
different characteristics, worth it also to be investigated and compared.
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