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Abstract

Thermal Protection System is a key element for atmospheric re-entry missions of aerospace vehicles.
Consequently, the identification of heat fluxes is of great industrial interest and is usually based on
temperature measurements. This contribution is concerned with inverse analyses of highly evolutive
heat  fluxes.  An  inverse  problem is  used  to  estimate  transient  surface  heat  fluxes  (or  convection
coefficient), for thermally degradable material (with ablation and pyrolysis phenomena), by using time
domain temperature  measurements  on thermal  protection.  The inverse  problem is formulated  as  a
minimization problem involving an objective functional, through an optimization loop. An optimal
control formulation (Lagrangian, adjoint and gradient steepest descent method combined with quasi-
Newton method computations) is then developed and applied. Accurate results of identification on
high fluxes test cases, and good agreement for temperatures restitutions, are obtained using synthetic,
noisy,  on-ground and  in-flight  data  measurements,  without  and  with  ablation  and  pyrolysis.  First
encouraging results with an automatic differentiation procedure are also presented in this paper.

1. Introduction 

The success of atmospheric re-entry missions is bound to the design of the Thermal Protection System (TPS) of the
aerospace vehicles involved. The high level of heat fluxes encountered in such missions has a direct effect on mass
balance of the heat shield. Consequently, the identification of heat fluxes is of great industrial interest but is in flight
only available by indirect  methods based on temperature  measurements.  For a  more detailed description of  the
problem, we refer to some publications on the Atmospheric Reentry Demonstrator (ARD) suborbital reentry test
flown1-2. In this contribution, we restrict ourselves to a supposed well known complex degradable material (with
ablation and pyrolysis) and study in details the modeling and identification of thermal fluxes. 
A lot of studies on degradable materials can be found for pyrolysis and ablation processes and the corresponding
applications, Inverse Heat Conduction problem, and the estimation of fluxes from temperature measurements. 
The inverse problem in this paper deals about the identification of time domain surface heat fluxes (or convection

coefficient
 t0 ), for thermally degradable material (ablation and pyrolysis processes), on a one-dimensional slab

of thickness e ,  by using time domain temperature  measurements  )(t on thermal  protection, taken below the

boundary surface, at thermocouple position  0x , during the time interval  ftt 0
, where  ft

denotes the final
time. 
This inverse problem is solved as a minimization problem involving a least square problem and an optimization loop.
An optimal control formulation (Lagrangian, adjoint and gradient computations) is then applied and developed with
the help of optimal control theory3 and experience on some industrial applications of inverse problems at EADS 4

(European Aeronautics Defense and Space Company).

2. Direct problem 
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Continuous equations

EADS ASTRIUM-ST has developed5 a transient one-dimensional thermal problem with one moving boundary 
(ablative surface) that is used at to model complex chemical processes of simultaneous heating, pyrolysis, ablation 
and thermal degradation behaviour of ablative materials. We briefly present the direct model used.

Internal energy balance (for pyrolysable ablative material) :

The internal energy balance is a transient thermal conduction equation with additional pyrolysis terms
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with  x the abscissa,  t the time, T (x,t) the temperature,   (x,t) the specific mass,  pC  the heat capacity,    the

thermal conductivity,  gm  the pyrolysis gas mass flow rate,  gh  the pyrolysis gas enthalpy, 1A a constant, vF
the pyrolysis gas formation heat.

Pyrolysis with internal decomposition modelled via a first-order rate process based on the Arrhenius equation

The time domain evolution of specific mass is given by :
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c and v are the charred and virgin material densities, A the frequency factor in pyrolysis, B the fictitious 
temperature in pyrolysis, np the order of the reaction. Internal decomposition converts some of the solid into 
pyrolysis gas. 
The pyrolysis gas mass flux is related to the decomposition by the simple mass balance:
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The surface recession : we denote by s the abscissa of the moving interface (ablation value), then s  is the recession
rate. This physical process can be splitted in three kinds of ablation: mechanical recession rate, chemical recession
rate and hydroerosion recession rate :

hychemmeca ssss   (4)

Surface energy balance on the moving boundary:

The physical conditions at the hot surface are determined by convective heating and by thermochemical interactions
of the surface with the boundary-layer gas. The surface energy balance takes the following form:
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with  1  the pyrolysis gas blocking factor, cH the pyrolysis gas heat combustion, cm the ablation mass flow rate,

rh the athermanous enthalpy, wh the surface enthalpy, 2 the ablation gas blocking factor, vH the ablation heat,

  the  total  emissivity,    the  Stefan-Boltzmann  constant,  wT the  surface  temperature,  rT the  equivalent
temperature. 

Denote by 









s

T
W , the vector of temperature and ablation, functions of time t and position x. Therefore, the direct

problem can be represented in condensed vector form by the following system of coupled nonlinear time domain
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evolution differential equations:
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with  WF  a non linear operator and 0T  the reference initial temperature. 

Space partial derivatives are computed with a centered finite difference type scheme. The abscissa x  belongs to the

interval   ets , . It is parameterized by a reduced scaled space variable  1,0  :

  etsx   )(1 (7)

Then the system (6) is rewritten relatively to the variables  ,t  . The variable   is discretized with the help of K
grid points.
For simplicity, we explain our method on the implicit Euler scheme with a constant time step t . We define K the
number of one-dimensional grid points, N the number of time iterations, k the space index, n the time index in the

numerical scheme,   Nwww ,...,1  the discrete direct state variables matrix of dimension (K+1)*N, with the

discrete vector   nn
K

nnn sTTTw ,,,, 21   of dimension (K+1), n
mT the discrete computed temperature at time n,

at grid point m, for the K different points on the grid, ns the discrete computed ablation, at time n. The equation (6)
is written at time (n+1) :
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A linearization of the equation (8) is made at time n and after some calculations, we finally obtain a forward time
discrete linearized Euler scheme, with initial condition vanishing:
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2. Inverse problem 

Parameter, cost function, Lagrangian

Inverse problems deals with the identification of unknowns and the improvement of the understanding of physical
processes quantities which appear in the mathematical formulation of physical problems, by using measurements of
the system response. 
The inverse problem concerns the identification of the time domain surface heat fluxes (convection coefficient), for
degradable  material  (ablation  and  pyrolysis),  on  a  one-dimensional  slab of  thickness e ,  by  using  time domain

temperature measurements )(t on thermal protection, taken below the boundary surface, at thermocouple position

0x , during the time interval ftt 0
, where ft

 denotes the final time. The inverse problem is reformulated as a
minimization problem involving a cost objective functional, through an optimization loop, requiring the computation
of derivatives or gradients quantities and adjoint variables (optimal control formulation).
The key strategy to obtain an accurate numerical approximation of the gradient, is to compute the exact gradient of
the discretized problem, instead of applying a discretization scheme to the above systems of PDE-s.
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Let us consider that the time domain content of the unknown heat flux convection coefficient is represented by a

vector  Nppp ,...,1  which is sampled over time,  where the subscripts refer  to the sampled time.  N is the

number of unknowns and time iterations. These sampled values will be the control parameter variables.
To simplify our presentation, we present the inverse problem with measurements data with only one thermocouple
sensor, point m in the grid. Therefore, the first step in establishing a procedure for the solution of either inverse is
thus the definition of  an objective (cost) function: it  is  in our case a least  squares  performance index  J(p) that

measures the difference between model predictions n
mT  of temperature, given a heat flux parameter  p value, and

measurements temperatures n
m , at point m on the grid, time (n). The quadratic error or cost function j(p), depending

on the source parameters p, is defined by :
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with n
m  the discrete measured temperature, at time n, point m, and n

mT the discrete computed temperature vector,

at time n, point m. To minimize this quantity, by optimization algorithm, we need the derivatives of this least squares
objective function J(p), with respect to the parameters p.

Adjoint and gradients computations

We introduce the adjoint state matrix  2/12/1 ;  N   adjoint of the direct state matrix w , 2/1n being a

vector (K+1)*1, for all n=0,N. A Lagrangian formalism is used in the minimization of the functional J(p) because the
estimated dependent variable  )( pw  appearing in such functional  J(p) needs to satisfy a constraint, which is the
solution of the discrete direct problem. In order to derive the adjoint problem, the governing equation of the direct
problem, is therefore multiplied by the Lagrange multiplier, integrated in the space and time domains of interest and
added to the original cost functional J(p). The following Lagrangian L on these discrete quantities is:
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Differentiating the Lagrangian L with first order sensitivity variations, computing L  as function of  ,, wp ,
the variations of L  with respect to w are cancelled with an adequate choice of the adjoint state  . It leads to

the discrete adjoint system31 in 2/1n  unknown, n going backward from N to 0, 
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With this particular choice of  , the gradient of the cost function is simply obtained by :
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Optimization
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After computation of the gradient of cost function, we can now apply an iterative inverse procedure minimizing J(p)
to obtain an estimation of the unknown parameter optimal function optp . We will use the combination of a gradient
steepest descent method at the beginning of minimization and a Quasi Newton method to finish the minimization.

2. Automatic Differentiation 

To compute numerically  the adjoint  and gradient  discrete quantities for  the inverse problem in heat  convection
coefficient,  we have  also used the Automatic  Differentiation  (AD) engine  tool,  Tapenade,  developed at  INRIA
Sophia-Antipolis  by  the  Tropics  team6. Automatic  differentiation  is  a  family  of  techniques  for  computing  the
derivatives  of  a  function  defined  by  a  computer  program  (interpreted  as  computing  a  mathematical  function,
including arbitrarily complex simulation codes), for sensitivity and gradient analysis applications. The new program
obtained  is  called  the  differentiated  program.  Automatic  differentiation  with  adjoint  models  and  gradients
computations are used in many fields of science such as pioneering work in meteorology.
The derivatives of the instructions of a program (elemental operations) are combined according to the chain rule of
differential  calculus,  leading to  the two major  modes of  computing derivatives  with AD, the so-called forward
(tangent-linear) mode and reverse (cotangent-linear or adjoint) mode.
• The forward mode uses directional derivatives on a given direction vector in the input space (tangent approach. It

is appropriate to derive functions with small numbers of independent variables (input). 
• The reverse mode uses  derivatives starting with the dependent  variables  (output) and proceeding toward the

independent variables (input), and it is computed in the reverse of the original program's order. It is appropriate
for functions with small numbers of dependent variables (output) and lots of input independent variables. The
reverse mode of automatic differentiation is functionally equivalent to hand written discrete adjoint codes.

The implementation of robust and effective automatic differentiation tools requires advances in compiler technology,
graph algorithms, and automatic differentiation theory, and compared with other methods to compute adjoint and
gradients, automatic differentiation offers a number of advantages:
• Accuracy: derivatives computed via automatic differentiation exhibit no truncation error.
• Reduced software costs: automatic differentiation eliminates the time spent developing and debugging derivative

code by hand, or experimenting with step sizes for finite difference approximations. 
The adjoint code in   variables is built by automatic backward differentiation of the output J  versus w  direct
state variables, following and analyzing the flow of instructions in the direct program, and the dependences in w .
The gradient computation of  )( pJ  versus  p  parameter is built by automatic backward differentiation of the

output  pJ  versus p parameter, also following the flow of instructions in the direct program and analyzing the

flow dependences in p . It can be shown again that the gradient result depends on the w direct state variable and
the   adjoint state variable.

2. Numerical results 

Synthetic test case 

Some applications of time domain surface heat  convection coefficient  inverse problem for  thermally degradable
material are now presented. The material is a one-dimensional slab of thickness e, and time domain temperature
measurements are used below the boundary surface, at a given thermocouple position, during a time interval. We
start the minimization loop by an initial guess on convection coefficient and try to identify or reconstruct the good
convection coefficient.  In all  the following curve  results legends, INI stands for initial  guess  of the convection
coefficient, NUM for reconstruction obtained at the end of optimization process, and OBS for the reference solution

of the convection coefficient. The final time is denoted by ft
. The estimated temperatures are obtained from the

solution of the direct problem, by using a given well known convection coefficient  t0 . We want to restitute by

inversion this coefficient. 

Moreover, we define now two similar quality estimators for inverse problem :
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• A good estimator for the quality of restitution of temperature measurements is the RMST error between the n
m

measured temperature  and the reconstructed  temperature  n
mTopt ,  at  sensor m, at  optimal inverse solution

optp :
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• A  good  estimator  for  the  quality  of  restitution/identification  of  convection  coefficient  is  the  RMSp error

between the reference 0  convection coefficient and the reconstructed optimal optp :
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Identification of High Flux with ablation, Carbon/Resin material , x0=2.6 mm

It is  a quite  difficult  test  case,  containing high fluxes.  In  Fig.  1,  good results are obtained in the reconstructed
convection coefficient, except at final time, with initial half guess and using synthetic data (errorless measurements).
The RMS error on the flux is 0.06.  

Figure 1 Identification of High Flux with ablation, x0=2.6 mm 

Fig. 1 shows also that the RMS error on measured temperature, at the end of optimization process, is very low (0.7), 
after 70 optimizer iterations.  RMS (EQM) error on temperatures 
Fig. 2 shows results in the convection coefficient  obtained, with initial half of the value, additive, uncorrelated,
normally distributed, zero mean and known standard deviation (2%) noise, and uniform distributed, zero mean and
known standard deviation (5%) noise.  The RMS error on the flux is 0.105 and 0.125., which is satisfactory. 

Figure 2: Identification of High Flux with ablation, with 2% normal / 5% uniform noise , x0=2.6 mm
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Operational test case (Plasma Jet case) 

This case has been investigated to improve the robustness on an industrial problem where many experimental data
were available. The industrial applications are straight forward. The plasma jet facility of the ASTRIUM’s Aquitaine
plant is used with four coupled plasma torchs.
The measurements of sensors 1 to 4 (among the 8 sensors available at different depth) are treated all together in a
multi-sensors inversion process, with high ablation and high fluxes experiments conditions. We analyze the heat flux
restitution obtained
We show Fig. 3 the sensitivity to the inverse convection coefficient problem, for two different initial guess on the
flux. The shape of the different convection coefficients results (Num, Num 2) seems quite robust to the two different
initial guess (Init, Init 2). 
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Figure 3   Flux identification 
Two different initial guess (Init, Init 2) and Two different flux results (Num, and Num 2)

We show Fig. 4 the comparisons between the measurements (TC Obs) of temperature and the simulated (TC
Num) temperatures obtained after the optimization process, on the thermocouple sensors N°1 to 4. The agreement
is quite good, from sensors close to the surface (N°1) to sensor more deeply located in the slab (N°4). The final
quadratic  cost  (eqm)  is  equal  to  262,  with  a  total  of  150  optimizers  iterations  (gradient  +  quasi  Newton
optimization).
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Figure 4:  simulated (Num) and measured (obs) levels of temperatures at the sensors N°1 to 4, for the
identified convection coefficient (Num)

Using the common information of the four sensors, we can see that the simulated ablation values (for heat flux Num)
and  the  restitution  of  surface  temperature  are  quite  comparable  to  the  measured  ones  (Fig.  5).  The  respective
comparison to pyrometer measurements and surface temperature measurements are encouraging. An other source of
error  lies  in the experimental  process  and in the 1D Monopyro model,  taking into account  the conduction and
diffusion effect between all the sensors.
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Simulated (Temp) and measured (Pyrometer) levels of surface temperatures.

3. Conclusion

Motivated by atmospheric re-entry of aerospace vehicles and Thermal Protection System dimensioning problems,
this article is concerned with inverse analyses of highly dynamical heat fluxes. It addresses the inverse problem of
using temperature measurements to estimate the heat flux convection coefficient, at the surface of ablating materials. 
The inverse problem is formulated as a minimization problem involving a least square problem functional, through
an optimization loop. An optimal control formulation (Lagrangian, adjoint and gradient computations) is then applied
and developed, using an inverse software Monopyro which was developed at EADS ASTRIUM-ST Les Mureaux,
and which is a transient one-dimensional thermal code, with ablative surface and Gear integration scheme. 
Several  validation test  cases,  using synthetic,  noisy on-ground and in-flight data temperatures  measurements are
carried out, by applying the results of the minimization algorithm. Main results are:

 Validity of the inverse formulation for the description of the temperature and ablation variables evolution 
 Improvement  by  using  a  combined  gradient  steepest  descent  method  at  the  beginning  of  minimization

process and Quasi Newton method to finish the minimization,
 Convection  coefficient  restitution  has  been  improved  for  hard  cases  with  high  heat  fluxes  and  large

magnitudes, ablation effects, and operational data 
 Encouraging results with an automatic differentiation tool are also obtained, without ablation
 Implementation of the automatic differentiation tool to generate the inverse code,

Current works have started and have to be extended on the:
 Robustness to initial guess, sensitivity to measurements, number and position of sensors, and application of

regularization methods to stabilize noise errors on measurements,
 Thermal model uncertainties influences on the accuracy of extracted flight heat flux, athermanous enthalpy

identification,
 Validations on new implicit non linear Monopyro solver and aerothermal flight measurements
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	1. Introduction
	2. Direct problem
	Continuous equations
	2. Inverse problem
	Parameter, cost function, Lagrangian
	Adjoint and gradients computations
	Optimization
	2. Automatic Differentiation
	2. Numerical results
	Synthetic test case

	Identification of High Flux with ablation, Carbon/Resin material , x0=2.6 mm
	Operational test case (Plasma Jet case)

	3. Conclusion
	References

