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Abstract 
The aim of this work is to describe the influence of electronic excitation on the heat flux and stress 

tensor in chemically non-equilibrium weakly ionized gas mixtures. The modified Chapman-Enskog 

method is applied to derive the closed set of governing equations. Transport coefficients of diffusion, 

thermal diffusion, relaxation pressure and bulk viscosity are evaluated as functions of temperature and 

mixture composition in the temperature range 500–25000K. Prandtl and Schmidt numbers are 

calculated and compared with commonly used values. 

1. Introduction 

For the correct predictions of the drag and heat flux in the strongly non-equilibrium plasma flows, it is necessary to 

develop a transport processes theory under highly non-equilibrium conditions. At the moment, there is a large 

number of works devoted to the study of the mass, momentum and energy transport. However systematic evaluations 

of the relaxation pressure and bulk viscosity were not carried out and still represent a challenging task. The influence 

of electronic excitation on the transport phenomena was found to be important in few recent papers [1,2,3,4]. In the 

most simulations of strong non-equilibrium plasma flows quantities of bulk viscosity and relaxation pressure are 

neglected, although this assumption is often intuitive. In this paper, based on the method proposed in [5], the 

influence of non-equilibrium chemical reactions on the diagonal terms of the stress tensor is investigated in the case 

of fast translational and electronic energy exchanges. The novelty of this study is in taking into account the electronic 

excitation of nitrogen atoms in the calculation of the relaxation pressure and bulk viscosity. Using the modified 

Chapman-Enskog method we derive the transport linear systems for the calculation of the bulk viscosity, relaxation 

pressure, heat conductivity, diffusion and thermal diffusion coefficients.  The transport coefficients are calculated in 

the temperature range 500-25000 K; the influence of the chemical composition of the mixture on the relaxation 

pressure and bulk viscosity is studied. Prandtl and Schmidt numbers are calculated and compared with commonly 

used values. The results of this paper can be useful for improving the accuracy of modeling for the spacecraft 

reentry. 

2. Governing equations 

In the present paper, chemically non-equilibrium weakly ionized nitrogen N/N
+
/e

- 
mixture is considered. Weakly-

ionized means that a number density of electrons and ions is much smaller than the number density of neutral atoms. 

The ionized atomic species and electrons are supposed to be structure-less particles, whereas neutral atoms have a 

manifold of electronic states. The following relation between characteristic times of processes holds: the exchange of 

translational and electronic energy as well as charge transfer are assumed to be rapid processes, and ionization is 

supposed to be slow process: 

                 ,  (1) 
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here     is the characteristic time of the translational energy exchange,     is the characteristic time of the exchange 

of electronic energy,        is the characteristic time of ionization,   is the time of variation of gas-dynamic 

parameters. 

This case corresponds to the one-temperature model. Under such assumptions the gas mixture flow can be 

considered on the basis of the generalized Chapman-Enskog method described in [5]. 

A closed description of the flow in the one-temperature approximation is given by following set of macro-

parameters:   (   )    (   ),    (   ) are the number densities of nitrogen atoms, ions and electrons, 

respectively;  (   ) is the gas velocity;  (   ) is the gas temperature. 

The governing equations for macroscopic parameters have the following form: 

  
  

  
         (2) 

  
  

  
              (3) 

 
   

  
         (    )    

                     (4) 

 

here   is total specific energy including electronic degrees of freedom,    is diffusion velocity,   is the mixture 

density,   is the pressure tensor,   is the heat flux,   
      is the production  term due to ionization, 

   
      ∑ ∫    

      ∑   (    
            

   )  ,        
         

         
      (5) 

 

   
   is the collision operator for slow processes,    is the particle velocity,      

 ,     
  are the rate coefficients of 

recombination and ionization  at the collision with a partner d.  

Charged particles have only translational degrees of freedom, and neutral atoms have also electronic energy: 

          , 

        ,  (6) 

       , 

 

here    ,     are the specific translational and electronic energy. 

System (2)-(4) describes non-equilibrium chemical kinetics in a one temperature gas flow. 

3. Zero and first-order approaches 

Macroparameters that characterize mass, momentum, and energy transfer are specified by the distribution function. 

In the zero-order approach of the Chapman-Enskog method the distribution function has the form of Maxwell-

Boltzmann distribution: 

    
( )

 (
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), (7) 

 

where    is the mass of the particle,   is the temperature,   is Boltzmann constant,     is the statistical weight, 

     ( ) is the equilibrium internal partition function. For charged particles the distribution function has the form of 

Maxwell distribution over reduced peculiar velocity. 

In the first-order approximation the distribution function is obtained in the following form: 

 

        
( )(     ), (8) 
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   , (9) 

 

here     is the first-order correction,    is the diffusion driving force,    ,    
 ,    ,    ,     are the unknown 

functions, which are found from linear integral equations.  
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Substituting the first-order distribution function to the definition of heat flux, pressure tensor, diffusion velocity we 

obtain the following expressions: 

          ∑    
   ∑         , (10) 

   (      )           , (11) 

     ∑          
     , (12) 

 

here    is the specific enthalpy of chemical species c,   and   are shear and bulk viscosity coefficients,      is the 

relaxation pressure,     and    
 are diffusion and thermal diffusion coefficients, S is the deformation rate tensor, 

           is the thermal conductivity coefficient including contributions of translational and electronic degrees 

of freedom. 

One can see that the stress tensor contains additional contributions to the normal mean stress. Relaxation pressure 

appears as a result of the rapid inelastic exchanges of electronic and translation energy and of the slow ionization 

process. If all rapid exchanges are elastic or resonant, relaxation pressure is equal to zero. Also, prel=0, if slow 

processes don’t occur in the system.  

The coefficient of bulk viscosity appears if in the rapid process, the non-resonant exchange between the translational 

and internal energy occurs. Bulk viscosity is equal to zero if all internal energy exchanges proceed slowly or if the 

systems of translational and internal degrees of freedom are isolated. 

4. Transport coefficients  

Transport coefficients are determined by the functions    ,    
 ,    ,    ,     by following equations: 

 

   
  

  
     ,   

            ,   

             ,   

     
 

  
       ,  (13) 

    
 

 

  
      ,   

   
 

 
     ,  

here       
 

   ∫∫∫∫     (          
 )(          

 )                  is the integral bracket,    

  is relative velocity,   is the impact parameter,   is the angle between the planes of vector с and c1,  ,    are the 

peculiar velocities. 

For the solution of integral equations, the unknown functions are expanded into the series of Sonine and Waldmann-

Trübenbacher orthogonal polynomials over reduced peculiar velocity and internal energy. The functions    ,    , 

    are expanded into the double polynomial systems. In the case of ionized gas due to the slow convergence of 

Sonine polynomials the expansion should necessarily contain not only first non-vanishing terms, but high-order 

expansion terms. 

Substituting the current expansion in the integral equations we obtain the linear algebraic equations system for 

expansion coefficients      ,     
 ,     ,      ,      . These equations contain bracket integrals as the coefficients. The 

bracket integrals are simplified using the Mason and Monchick assumptions [6]. Expansion coefficients are 

expressed as solutions of linear equations, which are solved by the Gauss method. The transport coefficients come 

out from the expansion coefficients. All transport coefficients are expressed via reduced collision integrals and 

integrals depending on the energy variation in the inelastic collision.  

Reduced collision integrals are calculated for all types of interactions: neutral-neutral, neutral-charged, charged-

charged particles. Thus the reduced collision integral for atom-ion interactions is given by [7]: 
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  (   )  √   
(   )        

(   ) 
 ,   - odd,  (14) 

         
(   )             (   ) ,  (15) 

 

here    
(   ) 

 is the contribution of elastic interactions,       
(   ) 

 is the contribution of charge transfer cross–section,   , 

  ,    are the coefficients. For atom-electron interactions the following equation is proposed: 
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Coefficients   ,    are given in [7]. 

Integral brackets which specify bulk viscosity and relaxation pressure are reduced to the following formulas [4]: 
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here    is the molar fraction of particles,     
   

(   ) 

   
(   )  ,     

 

 

  

   
(   ) ,   

    
 

 

    
   

   
 is the number of collisions,         

is the contribution of internal degrees of freedom to the specific heat. 

The right hand side of algebraic equations system for expansion coefficient       contains the integral depending on 

the ionization reaction cross sections  ∑ ∫    
( )

  
( )

   
  ( )

    , here  ,    ,  . Provided that the cross section σ is 

independent on the electronic levels n, we obtain ∑∫  
( )

   
  ( )

     . Thus we are interested in calculation of the 

integrals ∑ ∫    
( )

  
( )

   
  ( )

     ∑ ∫    
( )

  
( )

   
  ( )

    , here.  

Evaluation of the zero-order collision integral gives [8]:    
  ( )

   ∑∫   
( )

   
( )

         
     , here      is the 

differential collision cross section,     is the solid angle,          (
      

   
),        is the affinity of ionization 

reaction,    is the gas constant. 

Let us use the following notations:         is the peculiar velocity,            ,         are the 

velocities of the center of mass and relative velocity, respectively. The corresponding dimensionless velocities are  

   (
  

   
)
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(   ). 

 

Then, using the kinematic relations for a binary collision [3], we find the expression for the integral:  
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here    
  

     
,    

     
     

  . 

Finally, after some transformations, we obtain 
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Integrals in (24) are evaluated numerically. 

 

4. Results   

The transport coefficients were calculated for N/N
+
/e

-
 mixture in the temperature range 500-25000K. 170 electronic 

states of N atoms are taken into account. 

 

 

Figure 1: Bulk viscosity coefficients as a function of temperature 

 

In Fig.1 the coefficient of bulk viscosity is shown as a function of temperature in the temperature range 500-25000K. 

The bulk viscosity coefficient increases strongly with temperature. One can notice non-monotonic behavior in the 

temperature range from 15000 to 25000 K. At high concentrations of atoms the value of bulk viscosity increases 

sharply in the temperature range 3000-5000K. For N/N
+
/e

-
 mixture, the bulk viscosity coefficient increases with the 

rise of fraction of neutral atoms in the mixture. Increasing of the molar fraction of structure-less particles leads to the 

decrease of the bulk viscosity coefficient. 

 
Figure 2: Ratio of the relaxation pressure to the hydrostatic pressure as a function of temperature 
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Contribution of the relaxation pressure into the stress tensor as a function of temperature is presented in Fig.2. When 

we take into account the electronic excitation, the contribution of the relaxation pressure can reach 9%. On the other 

hand, in the temperature range 5000-10000K the contribution of the relaxation pressure is negligibly small. Also it 

should be noted that the sign of the relaxation pressure changes, and the relaxation pressure of approximately zero 

corresponds to the chemical equilibrium:   
       . Sign of the relaxation pressure determined by the direction of 

the chemical reaction.  

Since the bulk viscosity is independent of pressure, its contribution to the stress tensor remains unchanged with 

pressure variation. Thus at low pressures, the main contribution to the stress tensor is given by the bulk viscosity, 

even for low values of the velocity divergence. 

In Fig.3 and Fig.4 the thermal diffusion coefficients as functions of temperature are presented for different mixture 

compositions. As we can see, thermal diffusion of electrons is significantly higher than thermal diffusion of ions and 

neutral atoms. 

 

 

Figure 3: Thermal diffusion coefficients as functions of temperature  

 

Figure 4: Thermal diffusion coefficients as functions of temperature  

 

The Prandtl number characterizes the ratio of momentum and heat transfer in the gas: 

    
   

 
  (25) 
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For monatomic gases the Prandtl number is usually assumed to be a constant. If we take into account the electronic 

excitation of atoms, the Prandtl number becomes a non-monotonic function of the temperature. The Prandtl number 

as a function of temperature is shown in Fig.5. It is shown, that ionization process leads to the decrease of the Prandtl 

number in the temperature range 4000 – 20000 K.  

The Schmidt number is the similarity criterion for the gas flows with diffusion processes and viscous effects: 

    
 

    
 .  (26) 

 

The Schmidt number as function of temperature is shown in Fig.6. As we can see, Schmidt number for a plasma flow 

is a non-monotonic function of the temperature. The contribution of structure-less particles leads to the Schmidt 

number decrease. 

 

Figure 5: Prandtl number as a function of temperature 

 

 

Figure 6: Schmidt numbers as functions of temperature 

6. Conclusions 

Mathematical model for the calculation of transport coefficients in strongly non-equilibrium plasma flows with 

electronic excitation of neutral atoms is developed. The relaxation pressure and bulk viscosity coefficients in 

chemically non-equilibrium weakly ionized gas mixture in the temperature range 500-25000 K are calculated. The 

contribution of electronic excitation is estimated. Rise of the concentration of structure-less particles leads to the 

increase of the relaxation pressure coefficient. The main contribution to the stress tensor is given by the relaxation 

pressure at atmospheric pressure and by the bulk viscosity at low pressures.  
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The Prandtl and Schmidt numbers are evaluated, and they are found to be essentially non-constant. In the 

temperature range 5000 – 18000 K for the plasma flow the Schmidt number is much less that constant value 0.5. 
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