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Table 1: Design parameters of UAV cyclcopter 

 Specifications

Rotor diameter  2,000mm 

Blade Span length 1,500mm 

Blade chord length 247mm 

Airfoil  NACA0018 

Main rotor RPM  420RPM 

Max. Pitch angle  0~35º 

Length with rotors 3,152mm 

Height 2,310mm 

Width 4,200mm 

Total weight 110kg 

Chamber volume of engine 294cc 

 
 
 
 

Table 2: Analysis condition 

 Specifications 

Analysis type  2D Transient 

Mesh type  Quadrilateral (Iso & Paver) 

Total number of cells  79,676 

Rotating angle / time step 1.8 ° 

Number of domains  6 

Moving mesh type  Sliding Mesh 

Turbulence model  K-epsilon 

Variables  Pitch angle 

Number of time steps  20,000 

Analysis time  12hrs (@2.66Ghz) 
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Figure 13: Graph of the rolling and yawing motion (initial) 

 
 

 

 
Figure 14: Graph of the rolling and yawing motion (stable) 
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