Clean Sky today:
Unique Public-Private-Partnership in Aeronautics

Focused on environmental goals: CO2, noise, Nox

Europe’s largest Aeronautics Research Programme ever

- €1.6B value, split 50/50 between the Commission (cash) and Clean Sky members and partners (in kind)
- Start February 2008; running up to 2017
- Over 50% of the work achieved (end 2012)
- More than 500 participants
From Technology to Demonstration

Design Studies, Rig Testing, Modelling

Engine / System Demonstrators

Flying Demonstrators TRL6

Risk Reduction

Integrating breakthrough technologies into full-scale demonstrators…

...preparing the next generation of aircraft

www.cleansky.eu
Integrated Program Structure

Clean Sky Technology Evaluator
- DLR & Thales

Concept
- Smart Fixed Wing Aircraft
 - Airbus & SAAB
- Green Regional Aircraft
 - Alenia & EADS-CASA
- Green Rotorcraft
 - Eurocopter & AgustaWestland

Aircraft

Eco-Design
- Dassault & Fraunhofer

Systems for Green Operations
- Thales & Liebherr

Sustainable and Green Engines
- Rolls-Royce & Safran

TECHNOLOGIES & DEMONSTRATORS

www.cleansky.eu
One programme, through diversity of demonstrators

One programme, with a set of consistent targets, a common approach, cross-links between technological platforms, global management and governance.

- 6 platforms
- 20 large demonstrators
- 100 key technologies

2015
Ground test

Large engine, advanced low pressure spool

2015
Regional Aircraft
More electric systems

Diesel powered light helicopter
2014

High Speed Demonstrator for passive laminar-flow wing technologies
2015
Propulsive efficiency: Contra-Rotating Open Rotor – Concept Challenges

- Noise & Vibration
- Counter-rotating propellers, noise optimised
- De-icing
- Rotating Nacelle Parts
- Operability & Power Management
- Power gearbox
- Communications via rotating systems
- Power Turbine
- Certificability & Reliability
- Protective Air Intake
- Propellers Pitch Change Control
- A/C Installation and wake interaction
- First ground test before end 2015

www.cleansky.eu
Drag reduction: laminar wing

Design of an all new natural laminar wing
- Proof of natural laminar wing concept in wind tunnel tests
- Use of novel materials and structural concepts
- Exploitation of structural and system integration together with tight tolerance / high quality manufacturing methods in a large scale ground test demonstrator
- Large scale flight test demonstration of the laminar wing in operational conditions

Laminar Wing Ground test demonstrator to address structural, system and manufacturing aspects

Starboard wing
Laminar wing structure concept option 1

Port wing
Laminar wing structure concept option 2

Laminar Wing aerodynamic layout and performance

Le Bourget June 2013
Lift increase:
Smart propeller blades

- **3D-Optimized Blade**
 Blade design for improved performances (stall alleviation, increased lift and reduced drag)
 ✔️ TRL 5/6 to completion
 (ground test demonstration)

- **Active Gurney Flap rotor**
 Active device (Gurney Flap) actuated once per revolution and blended into blades: lift increased and reduced power
 ✔️ Both model scale & full scale tests under preparation
 ✔️ Flight test 2014 (TRL6)
Weight reduction:
Composite structures

- Stiffened skin
- Impact angle 15°
- Impact angle 20°

Bird strike skin sensitivity

Clean Sky Joint Undertaking
On-board energy management

E-ECS for Regional Aircraft In-Flight Demonstration : Pack installation

- E-ECS pack will be installed in the RH pack bay replacing the existing pneumatic pack.
- LH Pneumatic Pack will perform essential functions for SoF

E-ECS pack will have four pneumatic interfaces:

- New interfaces
 - Scoop inlet: a new intake suited to the expected performances will be designed to target high recovery factor (>0.8)

- Existing interfaces
 - Pack discharge (modified distribution)
 - Ram Air inlet
 - Ram Air Outlet
Mission optimisation: MultiCriteria Departure Procedure

Objective

Multi-Criteria Departure Procedure (MCDP):
- Consistent with OPS 1.235 ("Noise Abatement Procedures")
- Use of already certified aircraft systems
- Investigate cash operating costs savings and environmental impact mitigation via adequately designed procedure

Concept

Tailor parameters relative to take-off airborne phase
- Regulatory performance (TOW, TFLEX...) remains an input
- Available parameters: Reduction alt, Acceleration alt, CAS, power setting
- Adaptation to TOW, A/C performances, atmospheric conditions...

Benefits

- Environmental
 Reduction of noise on sensitive area
- Economical
 Reduction of fuel burn → minimization of COC (Cash Operating Costs)
- Airline policy
 Fitting to airline policy (cost, green image...)

Applications

- All new aircraft
- New criteria compatibility (engine wear, NOx...)

MCDP : CO2, Nox, Noise reductions in departure phase
Mission optimisation: Electric taxiing

- Provide innovative solution for Green Aircraft Operation on Ground
 - Autonomous taxi on ground without use of engines to reduce fuel burn
 - Low noise brake cooling fan

Up to 4% fuel burn reduction for short-haul flights with electrical taxiing
- To design airframe for decreasing inputs, outputs and nuisances during a/c design & production and withdrawal phases: **for Airframe Application (EDA)**

- To design architectures of a/c systems, towards the more/all electrical a/c, with the objective of reducing use of non-renewable and noxious fluids/ materials during operations and maintenance: **for Systems Application (EDS)**

Inputs:
- Raw materials
- Water
- Energy...

Outputs, nuisances:
- Energy (warming)
- Liquid effluents
- Gaseous effluents
- Solid waste...
Technology Evaluator 2012
Showing Progress to the goals

<table>
<thead>
<tr>
<th>Clean Sky Concept Aircraft</th>
<th>Noise area (take off)</th>
<th>CO₂</th>
<th>NOₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Sweep Biz-Jet (Innovative Empennage)</td>
<td>-68%</td>
<td>Up to -32%</td>
<td>Up to -28%</td>
</tr>
<tr>
<td>High Sweep Biz-Jet</td>
<td>-36%</td>
<td>-22%</td>
<td>-26%</td>
</tr>
<tr>
<td>TP90 (Regional Turbo-prop)</td>
<td>-48%</td>
<td>Up to -23%</td>
<td>Up to -43%</td>
</tr>
<tr>
<td>GTF130 (Regional Jet – Geared Turbo-fan)</td>
<td>-75%</td>
<td>Up to -23%</td>
<td>Up to -46%</td>
</tr>
<tr>
<td>Short-Medium Range / CROR Engine</td>
<td>Up to -37%</td>
<td>Up to -30%</td>
<td>N/A</td>
</tr>
<tr>
<td>Long Range / 3-shaft Advanced Turbo-fan</td>
<td>Up to -28%</td>
<td>Up to -20%</td>
<td>Up to -21%¹</td>
</tr>
<tr>
<td>Single Engine Light</td>
<td>-47%</td>
<td>-30%</td>
<td>-76%</td>
</tr>
<tr>
<td>Twin Engine Light</td>
<td>Up to -53%</td>
<td>-26%</td>
<td>-74%</td>
</tr>
</tbody>
</table>

¹ This estimate excludes any SAGE6 ‘Lean Burn’ benefits which should lead to up to 55% NOx reduction in total
Technology Evaluation: Example of an Airport level Impact

Comparison of 55 dBA Lden contours
Example of a possible 2020 scenario with Clean Sky fleet inserted

Legend

<table>
<thead>
<tr>
<th>Clean Sky</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.0</td>
<td>55.0</td>
</tr>
</tbody>
</table>

www.cleansky.eu
Clean Sky 2

www.cleansky.eu
Meeting the Challenges set in Horizon 2020

• **Creating resource efficient transport that respects the environment:**
 Finishing the job for reaching ACARE 2020 targets beyond CS1 contribution, and paving the way for the 2035 intermediate step of the new Strategic Research and Innovation Agenda

• **Ensuring safe and seamless mobility:**
 With a global ATS vision, improve the use of small airports, bring new means to the air transport capabilities, provide for faster connections

• **Building industrial leadership in Europe:**
 Facing the new competitors through innovation – strengthening the whole European supply chain.

Enhancing and leveraging innovation capability across Europe, with a strong emphasis on SME participation
Big technical challenges, with bigger ones still ahead

Reduce perceived external noise by

• 50% by 2020
• 65% by 2050

Reduce NO\textsubscript{x} emissions by

• 80% by 2020
• 90% by 2050

Reduce fuel consumption and CO\textsubscript{2} emissions by

• 50% by 2020
• 75% by 2050

Vision 2020 and Flightpath 2050 targets are for new aircraft technology relative to 2000 performance
Building on Clean Sky, going further into integration at full aircraft level
And developing new technology streams for the next generations of aircraft
Going further in aircraft-level integration: High-speed rotorcraft demonstrations

For increased mobility within global ATS, search & rescue, emergency transport...

Tilt-rotor

Compound
Partnerships triggered by Clean Sky are essential. Progressively creating a European “Innovation Chain”

>38% of SMEs in Clean Sky Partners
23% academia
24 countries involved
50% of participants are newcomers in European research

Clean Sky 2: larger programme, more open to competition, will need a still wider participation – attracting even more newcomers

It is a Clean Sky JTI ambition to explore routes and create a model for technological innovation in Europe
Lunch time